2,095,371 research outputs found
Deep attentive video summarization with distribution consistency learning
This article studies supervised video summarization by formulating it into a sequence-to-sequence learning framework, in which the input and output are sequences of original video frames and their predicted importance scores, respectively. Two critical issues are addressed in this article: short-term contextual attention insufficiency and distribution inconsistency. The former lies in the insufficiency of capturing the short-term contextual attention information within the video sequence itself since the existing approaches focus a lot on the long-term encoder-decoder attention. The latter refers to the distributions of predicted importance score sequence and the ground-truth sequence is inconsistent, which may lead to a suboptimal solution. To better mitigate the first issue, we incorporate a self-attention mechanism in the encoder to highlight the important keyframes in a short-term context. The proposed approach alongside the encoder-decoder attention constitutes our deep attentive models for video summarization. For the second one, we propose a distribution consistency learning method by employing a simple yet effective regularization loss term, which seeks a consistent distribution for the two sequences. Our final approach is dubbed as Attentive and Distribution consistent video Summarization (ADSum). Extensive experiments on benchmark data sets demonstrate the superiority of the proposed ADSum approach against state-of-the-art approaches
Deep learning-based anomalous object detection system powered by microcontroller for PTZ cameras
Automatic video surveillance systems are usually designed to detect anomalous objects being present in a scene or behaving dangerously. In order to perform adequately, they must incorporate models able to achieve accurate pattern recognition
in an image, and deep learning neural networks excel at this task. However, exhaustive scan of the full image results in multiple image blocks or windows to analyze, which could make the time performance of the system very poor when implemented on low cost devices. This paper presents a system which attempts to
detect abnormal moving objects within an area covered by a PTZ camera while it is panning. The decision about the block of the image to analyze is based on a mixture distribution composed of two components: a uniform probability distribution, which
represents a blind random selection, and a mixture of Gaussian probability distributions. Gaussian distributions represent windows in the image where anomalous objects were detected previously and contribute to generate the next window to analyze close to those windows of interest. The system is implemented on
a Raspberry Pi microcontroller-based board, which enables the design and implementation of a low-cost monitoring system that is able to perform image processing.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Building Program Vector Representations for Deep Learning
Deep learning has made significant breakthroughs in various fields of
artificial intelligence. Advantages of deep learning include the ability to
capture highly complicated features, weak involvement of human engineering,
etc. However, it is still virtually impossible to use deep learning to analyze
programs since deep architectures cannot be trained effectively with pure back
propagation. In this pioneering paper, we propose the "coding criterion" to
build program vector representations, which are the premise of deep learning
for program analysis. Our representation learning approach directly makes deep
learning a reality in this new field. We evaluate the learned vector
representations both qualitatively and quantitatively. We conclude, based on
the experiments, the coding criterion is successful in building program
representations. To evaluate whether deep learning is beneficial for program
analysis, we feed the representations to deep neural networks, and achieve
higher accuracy in the program classification task than "shallow" methods, such
as logistic regression and the support vector machine. This result confirms the
feasibility of deep learning to analyze programs. It also gives primary
evidence of its success in this new field. We believe deep learning will become
an outstanding technique for program analysis in the near future.Comment: This paper was submitted to ICSE'1
Performance Evaluation of Deep Learning Tools in Docker Containers
With the success of deep learning techniques in a broad range of application
domains, many deep learning software frameworks have been developed and are
being updated frequently to adapt to new hardware features and software
libraries, which bring a big challenge for end users and system administrators.
To address this problem, container techniques are widely used to simplify the
deployment and management of deep learning software. However, it remains
unknown whether container techniques bring any performance penalty to deep
learning applications. The purpose of this work is to systematically evaluate
the impact of docker container on the performance of deep learning
applications. We first benchmark the performance of system components (IO, CPU
and GPU) in a docker container and the host system and compare the results to
see if there's any difference. According to our results, we find that
computational intensive jobs, either running on CPU or GPU, have small overhead
indicating docker containers can be applied to deep learning programs. Then we
evaluate the performance of some popular deep learning tools deployed in a
docker container and the host system. It turns out that the docker container
will not cause noticeable drawbacks while running those deep learning tools. So
encapsulating deep learning tool in a container is a feasible solution.Comment: Conference: BIgCom2017, 9 page
Deep learning for supervised classification
One of the most recent area in the Machine Learning research is Deep Learning. Deep Learning algorithms have been applied successfully to computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics. The key idea of Deep Learning is to combine the best techniques from Machine Learning to build powerful general‑purpose learning algorithms. It is a mistake to identify Deep Neural Networks with Deep Learning Algorithms. Other approaches are possible, and in this paper we illustrate a generalization of Stacking which has very competitive performances. In particular, we show an application of this approach to a real classification problem, where a three-stages Stacking has proved to be very effective
- …
