27 research outputs found

    Classification of histological images of thyroid nodules based on a combination of Deep Features and Machine Learning

    Get PDF
    Background: Thyroid nodules are a prevalent worldwide disease with complex pathological types. They can be classified as either benign or malignant. This paper presents a tool for automatically classifying histological images of thyroid nodules, with a focus on papillary carcinoma and follicular adenoma. Methods: In this work, two pre-trained Convolutional Neural Network (CNN) architectures, VGG16 and VGG19, are used to extract deep features. Then, a principal component analysis was used to reduce the dimensionality of the vectors. Then, three machine learning algorithms (Support Vector Machine, K-Nearest Neighbor, and Random Forest) were used for classification. These investigations were applied to our database collection, Results: The proposed investigations have been applied to our private database collection with a total of 112 histological images. The highest results were obtained by the VGG16 transfer deep feature and the SVM classifier with an accuracy rate equal to 100%

    Efficient breast cancer classification network with dual squeeze and excitation in histopathological images.

    Get PDF
    Medical image analysis methods for mammograms, ultrasound, and magnetic resonance imaging (MRI) cannot provide the underline features on the cellular level to understand the cancer microenvironment which makes them unsuitable for breast cancer subtype classification study. In this paper, we propose a convolutional neural network (CNN)-based breast cancer classification method for hematoxylin and eosin (H&E) whole slide images (WSIs). The proposed method incorporates fused mobile inverted bottleneck convolutions (FMB-Conv) and mobile inverted bottleneck convolutions (MBConv) with a dual squeeze and excitation (DSE) network to accurately classify breast cancer tissue into binary (benign and malignant) and eight subtypes using histopathology images. For that, a pre-trained EfficientNetV2 network is used as a backbone with a modified DSE block that combines the spatial and channel-wise squeeze and excitation layers to highlight important low-level and high-level abstract features. Our method outperformed ResNet101, InceptionResNetV2, and EfficientNetV2 networks on the publicly available BreakHis dataset for the binary and multi-class breast cancer classification in terms of precision, recall, and F1-score on multiple magnification levels

    A New Hybrid Breast Cancer Diagnosis Model Using Deep Learning Model and ReliefF

    Get PDF
    Breast cancer is a dangerous type of cancer usually found in women and is a significant research topic in medical science. In patients who are diagnosed and not treated early, cancer spreads to other organs, making treatment difficult. In breast cancer diagnosis, the accuracy of the pathological diagnosis is of great importance to shorten the decision-making process, minimize unnoticed cancer cells and obtain a faster diagnosis. However, the similarity of images in histopathological breast cancer image analysis is a sensitive and difficult process that requires high competence for field experts. In recent years, researchers have been seeking solutions to this process using machine learning and deep learning methods, which have contributed to significant developments in medical diagnosis and image analysis. In this study, a hybrid DCNN + ReliefF is proposed for the classification of breast cancer histopathological images, utilizing the activation properties of pre-trained deep convolutional neural network (DCNN) models, and the dimension-reduction-based ReliefF feature selective algorithm. The model is based on a fine-tuned transfer-learning technique for fully connected layers. In addition, the models were compared to the k-nearest neighbor (kNN), naive Bayes (NB), and support vector machine (SVM) machine learning approaches. The performance of each feature extractor and classifier combination was analyzed using the sensitivity, precision, F1-Score, and ROC curves. The proposed hybrid model was trained separately at different magnifications using the BreakHis dataset. The results show that the model is an efficient classification model with up to 97.8% (AUC) accuracy. © 2022 Lavoisier. All rights reserved

    Reduced Deep Convolutional Activation Features (R-DeCAF) in Histopathology Images to Improve the Classification Performance for Breast Cancer Diagnosis

    Full text link
    Breast cancer is the second most common cancer among women worldwide. Diagnosis of breast cancer by the pathologists is a time-consuming procedure and subjective. Computer aided diagnosis frameworks are utilized to relieve pathologist workload by classifying the data automatically, in which deep convolutional neural networks (CNNs) are effective solutions. The features extracted from activation layer of pre-trained CNNs are called deep convolutional activation features (DeCAF). In this paper, we have analyzed that all DeCAF features are not necessarily led to a higher accuracy in the classification task and dimension reduction plays an important role. Therefore, different dimension reduction methods are applied to achieve an effective combination of features by capturing the essence of DeCAF features. To this purpose, we have proposed reduced deep convolutional activation features (R-DeCAF). In this framework, pre-trained CNNs such as AlexNet, VGG-16 and VGG-19 are utilized in transfer learning mode as feature extractors. DeCAF features are extracted from the first fully connected layer of the mentioned CNNs and support vector machine has been used for binary classification. Among linear and nonlinear dimensionality reduction algorithms, linear approaches such as principal component analysis (PCA) represent a better combination among deep features and lead to a higher accuracy in the classification task using small number of features considering specific amount of cumulative explained variance (CEV) of features. The proposed method is validated using experimental BreakHis dataset. Comprehensive results show improvement in the classification accuracy up to 4.3% with less computational time. Best achieved accuracy is 91.13% for 400x data with feature vector size (FVS) of 23 and CEV equals to 0.15 using pre-trained AlexNet as feature extractor and PCA as feature reduction algorithm
    corecore