3,296 research outputs found

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Face Anti-Spoofing by Learning Polarization Cues in a Real-World Scenario

    Full text link
    Face anti-spoofing is the key to preventing security breaches in biometric recognition applications. Existing software-based and hardware-based face liveness detection methods are effective in constrained environments or designated datasets only. Deep learning method using RGB and infrared images demands a large amount of training data for new attacks. In this paper, we present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face compared to a deceptive attack. A computational framework is developed to extract and classify the unique face features using convolutional neural networks and SVM together. Our real-time polarized face anti-spoofing (PAAS) detection method uses a on-chip integrated polarization imaging sensor with optimized processing algorithms. Extensive experiments demonstrate the advantages of the PAAS technique to counter diverse face spoofing attacks (print, replay, mask) in uncontrolled indoor and outdoor conditions by learning polarized face images of 33 people. A four-directional polarized face image dataset is released to inspire future applications within biometric anti-spoofing field.Comment: 14pages,8figure

    Spoof detection using time-delay shallow neural network and feature switching

    Full text link
    Detecting spoofed utterances is a fundamental problem in voice-based biometrics. Spoofing can be performed either by logical accesses like speech synthesis, voice conversion or by physical accesses such as replaying the pre-recorded utterance. Inspired by the state-of-the-art \emph{x}-vector based speaker verification approach, this paper proposes a time-delay shallow neural network (TD-SNN) for spoof detection for both logical and physical access. The novelty of the proposed TD-SNN system vis-a-vis conventional DNN systems is that it can handle variable length utterances during testing. Performance of the proposed TD-SNN systems and the baseline Gaussian mixture models (GMMs) is analyzed on the ASV-spoof-2019 dataset. The performance of the systems is measured in terms of the minimum normalized tandem detection cost function (min-t-DCF). When studied with individual features, the TD-SNN system consistently outperforms the GMM system for physical access. For logical access, GMM surpasses TD-SNN systems for certain individual features. When combined with the decision-level feature switching (DLFS) paradigm, the best TD-SNN system outperforms the best baseline GMM system on evaluation data with a relative improvement of 48.03\% and 49.47\% for both logical and physical access, respectively
    • …
    corecore