48,785 research outputs found

    Deep Embedding Kernel

    Get PDF
    Kernel methods and deep learning are two major branches of machine learning that have achieved numerous successes in both analytics and artificial intelligence. While having their own unique characteristics, both branches work through mapping data to a feature space that is supposedly more favorable towards the given task. This dissertation addresses the strengths and weaknesses of each mapping method through combining them and forming a family of novel deep architectures that center around the Deep Embedding Kernel (DEK). In short, DEK is a realization of a kernel function through a newly deep architecture. The mapping in DEK is both implicit (like in kernel methods) and learnable (like in deep learning). Prior to DEK, we proposed a less advanced architecture called Deep Kernel for the tasks of classification and visualization. More recently, we integrate DEK with the novel Dual Deep Learning framework to model big unstructured data. Using DEK as a core component, we further propose two machine learning models: Deep Similarity-Enhanced K Nearest Neighbors (DSE-KNN) and Recurrent Embedding Kernel (REK). Both models have their mappings trained towards optimizing data instances\u27 neighborhoods in the feature space. REK is specifically designed for time series data. Experimental studies throughout the dissertation show that the proposed models have competitive performance to other commonly used and state-of-the-art machine learning models in their given tasks

    Deep Metric Learning and Image Classification with Nearest Neighbour Gaussian Kernels

    Full text link
    We present a Gaussian kernel loss function and training algorithm for convolutional neural networks that can be directly applied to both distance metric learning and image classification problems. Our method treats all training features from a deep neural network as Gaussian kernel centres and computes loss by summing the influence of a feature's nearby centres in the feature embedding space. Our approach is made scalable by treating it as an approximate nearest neighbour search problem. We show how to make end-to-end learning feasible, resulting in a well formed embedding space, in which semantically related instances are likely to be located near one another, regardless of whether or not the network was trained on those classes. Our approach outperforms state-of-the-art deep metric learning approaches on embedding learning challenges, as well as conventional softmax classification on several datasets.Comment: Accepted in the International Conference on Image Processing (ICIP) 2018. Formerly titled Nearest Neighbour Radial Basis Function Solvers for Deep Neural Network

    Nonlinear functional regression by functional deep neural network with kernel embedding

    Full text link
    With the rapid development of deep learning in various fields of science and technology, such as speech recognition, image classification, and natural language processing, recently it is also widely applied in the functional data analysis (FDA) with some empirical success. However, due to the infinite dimensional input, we need a powerful dimension reduction method for functional learning tasks, especially for the nonlinear functional regression. In this paper, based on the idea of smooth kernel integral transformation, we propose a functional deep neural network with an efficient and fully data-dependent dimension reduction method. The architecture of our functional net consists of a kernel embedding step: an integral transformation with a data-dependent smooth kernel; a projection step: a dimension reduction by projection with eigenfunction basis based on the embedding kernel; and finally an expressive deep ReLU neural network for the prediction. The utilization of smooth kernel embedding enables our functional net to be discretization invariant, efficient, and robust to noisy observations, capable of utilizing information in both input functions and responses data, and have a low requirement on the number of discrete points for an unimpaired generalization performance. We conduct theoretical analysis including approximation error and generalization error analysis, and numerical simulations to verify these advantages of our functional net

    Deep learning for extracting protein-protein interactions from biomedical literature

    Full text link
    State-of-the-art methods for protein-protein interaction (PPI) extraction are primarily feature-based or kernel-based by leveraging lexical and syntactic information. But how to incorporate such knowledge in the recent deep learning methods remains an open question. In this paper, we propose a multichannel dependency-based convolutional neural network model (McDepCNN). It applies one channel to the embedding vector of each word in the sentence, and another channel to the embedding vector of the head of the corresponding word. Therefore, the model can use richer information obtained from different channels. Experiments on two public benchmarking datasets, AIMed and BioInfer, demonstrate that McDepCNN compares favorably to the state-of-the-art rich-feature and single-kernel based methods. In addition, McDepCNN achieves 24.4% relative improvement in F1-score over the state-of-the-art methods on cross-corpus evaluation and 12% improvement in F1-score over kernel-based methods on "difficult" instances. These results suggest that McDepCNN generalizes more easily over different corpora, and is capable of capturing long distance features in the sentences.Comment: Accepted for publication in Proceedings of the 2017 Workshop on Biomedical Natural Language Processing, 10 pages, 2 figures, 6 table

    Learning Combinatorial Embedding Networks for Deep Graph Matching

    Full text link
    Graph matching refers to finding node correspondence between graphs, such that the corresponding node and edge's affinity can be maximized. In addition with its NP-completeness nature, another important challenge is effective modeling of the node-wise and structure-wise affinity across graphs and the resulting objective, to guide the matching procedure effectively finding the true matching against noises. To this end, this paper devises an end-to-end differentiable deep network pipeline to learn the affinity for graph matching. It involves a supervised permutation loss regarding with node correspondence to capture the combinatorial nature for graph matching. Meanwhile deep graph embedding models are adopted to parameterize both intra-graph and cross-graph affinity functions, instead of the traditional shallow and simple parametric forms e.g. a Gaussian kernel. The embedding can also effectively capture the higher-order structure beyond second-order edges. The permutation loss model is agnostic to the number of nodes, and the embedding model is shared among nodes such that the network allows for varying numbers of nodes in graphs for training and inference. Moreover, our network is class-agnostic with some generalization capability across different categories. All these features are welcomed for real-world applications. Experiments show its superiority against state-of-the-art graph matching learning methods.Comment: ICCV2019 oral. Code available at https://github.com/Thinklab-SJTU/PCA-G
    • …
    corecore