26,907 research outputs found

    Conditional Random Fields as Recurrent Neural Networks

    Full text link
    Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.Comment: This paper is published in IEEE ICCV 201

    Exploring Context with Deep Structured models for Semantic Segmentation

    Full text link
    State-of-the-art semantic image segmentation methods are mostly based on training deep convolutional neural networks (CNNs). In this work, we proffer to improve semantic segmentation with the use of contextual information. In particular, we explore `patch-patch' context and `patch-background' context in deep CNNs. We formulate deep structured models by combining CNNs and Conditional Random Fields (CRFs) for learning the patch-patch context between image regions. Specifically, we formulate CNN-based pairwise potential functions to capture semantic correlations between neighboring patches. Efficient piecewise training of the proposed deep structured model is then applied in order to avoid repeated expensive CRF inference during the course of back propagation. For capturing the patch-background context, we show that a network design with traditional multi-scale image inputs and sliding pyramid pooling is very effective for improving performance. We perform comprehensive evaluation of the proposed method. We achieve new state-of-the-art performance on a number of challenging semantic segmentation datasets including NYUDv2NYUDv2, PASCALPASCAL-VOC2012VOC2012, CityscapesCityscapes, PASCALPASCAL-ContextContext, SUNSUN-RGBDRGBD, SIFTSIFT-flowflow, and KITTIKITTI datasets. Particularly, we report an intersection-over-union score of 77.877.8 on the PASCALPASCAL-VOC2012VOC2012 dataset.Comment: 16 pages. Accepted to IEEE T. Pattern Analysis & Machine Intelligence, 2017. Extended version of arXiv:1504.0101

    Deeply Learning the Messages in Message Passing Inference

    Full text link
    Deep structured output learning shows great promise in tasks like semantic image segmentation. We proffer a new, efficient deep structured model learning scheme, in which we show how deep Convolutional Neural Networks (CNNs) can be used to estimate the messages in message passing inference for structured prediction with Conditional Random Fields (CRFs). With such CNN message estimators, we obviate the need to learn or evaluate potential functions for message calculation. This confers significant efficiency for learning, since otherwise when performing structured learning for a CRF with CNN potentials it is necessary to undertake expensive inference for every stochastic gradient iteration. The network output dimension for message estimation is the same as the number of classes, in contrast to the network output for general CNN potential functions in CRFs, which is exponential in the order of the potentials. Hence CNN message learning has fewer network parameters and is more scalable for cases that a large number of classes are involved. We apply our method to semantic image segmentation on the PASCAL VOC 2012 dataset. We achieve an intersection-over-union score of 73.4 on its test set, which is the best reported result for methods using the VOC training images alone. This impressive performance demonstrates the effectiveness and usefulness of our CNN message learning method.Comment: 11 pages. Appearing in Proc. The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015, Montreal, Canad
    • …
    corecore