5 research outputs found

    Deep Virtual Networks for Memory Efficient Inference of Multiple Tasks

    Full text link
    Deep networks consume a large amount of memory by their nature. A natural question arises can we reduce that memory requirement whilst maintaining performance. In particular, in this work we address the problem of memory efficient learning for multiple tasks. To this end, we propose a novel network architecture producing multiple networks of different configurations, termed deep virtual networks (DVNs), for different tasks. Each DVN is specialized for a single task and structured hierarchically. The hierarchical structure, which contains multiple levels of hierarchy corresponding to different numbers of parameters, enables multiple inference for different memory budgets. The building block of a deep virtual network is based on a disjoint collection of parameters of a network, which we call a unit. The lowest level of hierarchy in a deep virtual network is a unit, and higher levels of hierarchy contain lower levels' units and other additional units. Given a budget on the number of parameters, a different level of a deep virtual network can be chosen to perform the task. A unit can be shared by different DVNs, allowing multiple DVNs in a single network. In addition, shared units provide assistance to the target task with additional knowledge learned from another tasks. This cooperative configuration of DVNs makes it possible to handle different tasks in a memory-aware manner. Our experiments show that the proposed method outperforms existing approaches for multiple tasks. Notably, ours is more efficient than others as it allows memory-aware inference for all tasks.Comment: CVPR 201

    Deep Elastic Networks with Model Selection for Multi-Task Learning

    Full text link
    In this work, we consider the problem of instance-wise dynamic network model selection for multi-task learning. To this end, we propose an efficient approach to exploit a compact but accurate model in a backbone architecture for each instance of all tasks. The proposed method consists of an estimator and a selector. The estimator is based on a backbone architecture and structured hierarchically. It can produce multiple different network models of different configurations in a hierarchical structure. The selector chooses a model dynamically from a pool of candidate models given an input instance. The selector is a relatively small-size network consisting of a few layers, which estimates a probability distribution over the candidate models when an input instance of a task is given. Both estimator and selector are jointly trained in a unified learning framework in conjunction with a sampling-based learning strategy, without additional computation steps. We demonstrate the proposed approach for several image classification tasks compared to existing approaches performing model selection or learning multiple tasks. Experimental results show that our approach gives not only outstanding performance compared to other competitors but also the versatility to perform instance-wise model selection for multiple tasks.Comment: ICCV 201

    Deep virtual networks for memory efficient inference of multiple tasks

    No full text
    Deep networks consume a large amount of memory by their nature. A natural question arises can we reduce that memory requirement whilst maintaining performance. In particular, in this work we address the problem of memory efficient learning for multiple tasks. To this end, we propose a novel network architecture producing multiple networks of different configurations, termed deep virtual networks (DVNs), for different tasks. Each DVN is specialized for a single task and structured hierarchically. The hierarchical structure, which contains multiple levels of hierarchy corresponding to different numbers of parameters, enables multiple inference for different memory budgets. The building block of a deep virtual network is based on a disjoint collection of parameters of a network, which we call a unit. The lowest level of hierarchy in a deep virtual network is a unit, and higher levels of hierarchy contain lower levels’ units and other additional units. Given a budget on the number of parameters, a different level of a deep virtual network can be chosen to perform the task. A unit can be shared by different DVNs, allowing multiple DVNs in a single network. In addition, shared units provide assistance to the target task with additional knowledge learned from another tasks. This cooperative configuration of DVNs makes it possible to handle different tasks in a memory-aware manner. Our experiments show that the proposed method outperforms existing approaches for multiple tasks. Notably, ours is more efficient than others as it allows memory-aware inference for all tasks

    Deep virtual networks for memory efficient inference of multiple tasks

    No full text
    Deep networks consume a large amount of memory by their nature. A natural question arises can we reduce that memory requirement whilst maintaining performance. In particular, in this work we address the problem of memory efficient learning for multiple tasks. To this end, we propose a novel network architecture producing multiple networks of different configurations, termed deep virtual networks (DVNs), for different tasks. Each DVN is specialized for a single task and structured hierarchically. The hierarchical structure, which contains multiple levels of hierarchy corresponding to different numbers of parameters, enables multiple inference for different memory budgets. The building block of a deep virtual network is based on a disjoint collection of parameters of a network, which we call a unit. The lowest level of hierarchy in a deep virtual network is a unit, and higher levels of hierarchy contain lower levels’ units and other additional units. Given a budget on the number of parameters, a different level of a deep virtual network can be chosen to perform the task. A unit can be shared by different DVNs, allowing multiple DVNs in a single network. In addition, shared units provide assistance to the target task with additional knowledge learned from another tasks. This cooperative configuration of DVNs makes it possible to handle different tasks in a memory-aware manner. Our experiments show that the proposed method outperforms existing approaches for multiple tasks. Notably, ours is more efficient than others as it allows memory-aware inference for all tasks
    corecore