4,090 research outputs found

    Deep Video Inpainting

    Full text link
    Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time dimension. In this work, we propose a novel deep network architecture for fast video inpainting. Built upon an image-based encoder-decoder model, our framework is designed to collect and refine information from neighbor frames and synthesize still-unknown regions. At the same time, the output is enforced to be temporally consistent by a recurrent feedback and a temporal memory module. Compared with the state-of-the-art image inpainting algorithm, our method produces videos that are much more semantically correct and temporally smooth. In contrast to the prior video completion method which relies on time-consuming optimization, our method runs in near real-time while generating competitive video results. Finally, we applied our framework to video retargeting task, and obtain visually pleasing results.Comment: Accepted at CVPR 201

    Free-form Video Inpainting with 3D Gated Convolution and Temporal PatchGAN

    Full text link
    Free-form video inpainting is a very challenging task that could be widely used for video editing such as text removal. Existing patch-based methods could not handle non-repetitive structures such as faces, while directly applying image-based inpainting models to videos will result in temporal inconsistency (see http://bit.ly/2Fu1n6b ). In this paper, we introduce a deep learn-ing based free-form video inpainting model, with proposed 3D gated convolutions to tackle the uncertainty of free-form masks and a novel Temporal PatchGAN loss to enhance temporal consistency. In addition, we collect videos and design a free-form mask generation algorithm to build the free-form video inpainting (FVI) dataset for training and evaluation of video inpainting models. We demonstrate the benefits of these components and experiments on both the FaceForensics and our FVI dataset suggest that our method is superior to existing ones. Related source code, full-resolution result videos and the FVI dataset could be found on Github https://github.com/amjltc295/Free-Form-Video-Inpainting .Comment: Accepted to ICCV 201

    VORNet: Spatio-temporally Consistent Video Inpainting for Object Removal

    Full text link
    Video object removal is a challenging task in video processing that often requires massive human efforts. Given the mask of the foreground object in each frame, the goal is to complete (inpaint) the object region and generate a video without the target object. While recently deep learning based methods have achieved great success on the image inpainting task, they often lead to inconsistent results between frames when applied to videos. In this work, we propose a novel learning-based Video Object Removal Network (VORNet) to solve the video object removal task in a spatio-temporally consistent manner, by combining the optical flow warping and image-based inpainting model. Experiments are done on our Synthesized Video Object Removal (SVOR) dataset based on the YouTube-VOS video segmentation dataset, and both the objective and subjective evaluation demonstrate that our VORNet generates more spatially and temporally consistent videos compared with existing methods.Comment: Accepted to CVPRW 201

    Frame-Recurrent Video Inpainting by Robust Optical Flow Inference

    Full text link
    In this paper, we present a new inpainting framework for recovering missing regions of video frames. Compared with image inpainting, performing this task on video presents new challenges such as how to preserving temporal consistency and spatial details, as well as how to handle arbitrary input video size and length fast and efficiently. Towards this end, we propose a novel deep learning architecture which incorporates ConvLSTM and optical flow for modeling the spatial-temporal consistency in videos. It also saves much computational resource such that our method can handle videos with larger frame size and arbitrary length streamingly in real-time. Furthermore, to generate an accurate optical flow from corrupted frames, we propose a robust flow generation module, where two sources of flows are fed and a flow blending network is trained to fuse them. We conduct extensive experiments to evaluate our method in various scenarios and different datasets, both qualitatively and quantitatively. The experimental results demonstrate the superior of our method compared with the state-of-the-art inpainting approaches

    Deep Blind Video Decaptioning by Temporal Aggregation and Recurrence

    Full text link
    Blind video decaptioning is a problem of automatically removing text overlays and inpainting the occluded parts in videos without any input masks. While recent deep learning based inpainting methods deal with a single image and mostly assume that the positions of the corrupted pixels are known, we aim at automatic text removal in video sequences without mask information. In this paper, we propose a simple yet effective framework for fast blind video decaptioning. We construct an encoder-decoder model, where the encoder takes multiple source frames that can provide visible pixels revealed from the scene dynamics. These hints are aggregated and fed into the decoder. We apply a residual connection from the input frame to the decoder output to enforce our network to focus on the corrupted regions only. Our proposed model was ranked in the first place in the ECCV Chalearn 2018 LAP Inpainting Competition Track2: Video decaptioning. In addition, we further improve this strong model by applying a recurrent feedback. The recurrent feedback not only enforces temporal coherence but also provides strong clues on where the corrupted pixels are. Both qualitative and quantitative experiments demonstrate that our full model produces accurate and temporally consistent video results in real time (50+ fps).Comment: Accepted at CVPR 201

    Copy-and-Paste Networks for Deep Video Inpainting

    Full text link
    We present a novel deep learning based algorithm for video inpainting. Video inpainting is a process of completing corrupted or missing regions in videos. Video inpainting has additional challenges compared to image inpainting due to the extra temporal information as well as the need for maintaining the temporal coherency. We propose a novel DNN-based framework called the Copy-and-Paste Networks for video inpainting that takes advantage of additional information in other frames of the video. The network is trained to copy corresponding contents in reference frames and paste them to fill the holes in the target frame. Our network also includes an alignment network that computes affine matrices between frames for the alignment, enabling the network to take information from more distant frames for robustness. Our method produces visually pleasing and temporally coherent results while running faster than the state-of-the-art optimization-based method. In addition, we extend our framework for enhancing over/under exposed frames in videos. Using this enhancement technique, we were able to significantly improve the lane detection accuracy on road videos.Comment: ICCV 201

    Deep Long Audio Inpainting

    Full text link
    Long (> 200 ms) audio inpainting, to recover a long missing part in an audio segment, could be widely applied to audio editing tasks and transmission loss recovery. It is a very challenging problem due to the high dimensional, complex and non-correlated audio features. While deep learning models have made tremendous progress in image and video inpainting, audio inpainting did not attract much attention. In this work, we take a pioneering step, exploring the possibility of adapting deep learning frameworks from various domains inclusive of audio synthesis and image inpainting for audio inpainting. Also, as the first to systematically analyze factors affecting audio inpainting performance, we explore how factors ranging from mask size, receptive field and audio representation could affect the performance. We also set up a benchmark for long audio inpainting. The code will be available on GitHub upon accepted

    Align-and-Attend Network for Globally and Locally Coherent Video Inpainting

    Full text link
    We propose a novel feed-forward network for video inpainting. We use a set of sampled video frames as the reference to take visible contents to fill the hole of a target frame. Our video inpainting network consists of two stages. The first stage is an alignment module that uses computed homographies between the reference frames and the target frame. The visible patches are then aggregated based on the frame similarity to fill in the target holes roughly. The second stage is a non-local attention module that matches the generated patches with known reference patches (in space and time) to refine the previous global alignment stage. Both stages consist of large spatial-temporal window size for the reference and thus enable modeling long-range correlations between distant information and the hole regions. Therefore, even challenging scenes with large or slowly moving holes can be handled, which have been hardly modeled by existing flow-based approach. Our network is also designed with a recurrent propagation stream to encourage temporal consistency in video results. Experiments on video object removal demonstrate that our method inpaints the holes with globally and locally coherent contents

    Improving Consistency and Correctness of Sequence Inpainting using Semantically Guided Generative Adversarial Network

    Full text link
    Contemporary benchmark methods for image inpainting are based on deep generative models and specifically leverage adversarial loss for yielding realistic reconstructions. However, these models cannot be directly applied on image/video sequences because of an intrinsic drawback- the reconstructions might be independently realistic, but, when visualized as a sequence, often lacks fidelity to the original uncorrupted sequence. The fundamental reason is that these methods try to find the best matching latent space representation near to natural image manifold without any explicit distance based loss. In this paper, we present a semantically conditioned Generative Adversarial Network (GAN) for sequence inpainting. The conditional information constrains the GAN to map a latent representation to a point in image manifold respecting the underlying pose and semantics of the scene. To the best of our knowledge, this is the first work which simultaneously addresses consistency and correctness of generative model based inpainting. We show that our generative model learns to disentangle pose and appearance information; this independence is exploited by our model to generate highly consistent reconstructions. The conditional information also aids the generator network in GAN to produce sharper images compared to the original GAN formulation. This helps in achieving more appealing inpainting performance. Though generic, our algorithm was targeted for inpainting on faces. When applied on CelebA and Youtube Faces datasets, the proposed method results in a significant improvement over the current benchmark, both in terms of quantitative evaluation (Peak Signal to Noise Ratio) and human visual scoring over diversified combinations of resolutions and deformations

    Improving Video Generation for Multi-functional Applications

    Full text link
    In this paper, we aim to improve the state-of-the-art video generative adversarial networks (GANs) with a view towards multi-functional applications. Our improved video GAN model does not separate foreground from background nor dynamic from static patterns, but learns to generate the entire video clip conjointly. Our model can thus be trained to generate - and learn from - a broad set of videos with no restriction. This is achieved by designing a robust one-stream video generation architecture with an extension of the state-of-the-art Wasserstein GAN framework that allows for better convergence. The experimental results show that our improved video GAN model outperforms state-of-theart video generative models on multiple challenging datasets. Furthermore, we demonstrate the superiority of our model by successfully extending it to three challenging problems: video colorization, video inpainting, and future prediction. To the best of our knowledge, this is the first work using GANs to colorize and inpaint video clips
    • …
    corecore