19,697 research outputs found

    Rehabilitation Exercise Repetition Segmentation and Counting using Skeletal Body Joints

    Full text link
    Physical exercise is an essential component of rehabilitation programs that improve quality of life and reduce mortality and re-hospitalization rates. In AI-driven virtual rehabilitation programs, patients complete their exercises independently at home, while AI algorithms analyze the exercise data to provide feedback to patients and report their progress to clinicians. To analyze exercise data, the first step is to segment it into consecutive repetitions. There has been a significant amount of research performed on segmenting and counting the repetitive activities of healthy individuals using raw video data, which raises concerns regarding privacy and is computationally intensive. Previous research on patients' rehabilitation exercise segmentation relied on data collected by multiple wearable sensors, which are difficult to use at home by rehabilitation patients. Compared to healthy individuals, segmenting and counting exercise repetitions in patients is more challenging because of the irregular repetition duration and the variation between repetitions. This paper presents a novel approach for segmenting and counting the repetitions of rehabilitation exercises performed by patients, based on their skeletal body joints. Skeletal body joints can be acquired through depth cameras or computer vision techniques applied to RGB videos of patients. Various sequential neural networks are designed to analyze the sequences of skeletal body joints and perform repetition segmentation and counting. Extensive experiments on three publicly available rehabilitation exercise datasets, KIMORE, UI-PRMD, and IntelliRehabDS, demonstrate the superiority of the proposed method compared to previous methods. The proposed method enables accurate exercise analysis while preserving privacy, facilitating the effective delivery of virtual rehabilitation programs.Comment: 8 pages, 1 figure, 2 table

    H-TSP: Hierarchically Solving the Large-Scale Travelling Salesman Problem

    Full text link
    We propose an end-to-end learning framework based on hierarchical reinforcement learning, called H-TSP, for addressing the large-scale Travelling Salesman Problem (TSP). The proposed H-TSP constructs a solution of a TSP instance starting from the scratch relying on two components: the upper-level policy chooses a small subset of nodes (up to 200 in our experiment) from all nodes that are to be traversed, while the lower-level policy takes the chosen nodes as input and outputs a tour connecting them to the existing partial route (initially only containing the depot). After jointly training the upper-level and lower-level policies, our approach can directly generate solutions for the given TSP instances without relying on any time-consuming search procedures. To demonstrate effectiveness of the proposed approach, we have conducted extensive experiments on randomly generated TSP instances with different numbers of nodes. We show that H-TSP can achieve comparable results (gap 3.42% vs. 7.32%) as SOTA search-based approaches, and more importantly, we reduce the time consumption up to two orders of magnitude (3.32s vs. 395.85s). To the best of our knowledge, H-TSP is the first end-to-end deep reinforcement learning approach that can scale to TSP instances of up to 10000 nodes. Although there are still gaps to SOTA results with respect to solution quality, we believe that H-TSP will be useful for practical applications, particularly those that are time-sensitive e.g., on-call routing and ride hailing service.Comment: Accepted by AAAI 2023, February 202

    Learning Robust Visual-Semantic Embedding for Generalizable Person Re-identification

    Full text link
    Generalizable person re-identification (Re-ID) is a very hot research topic in machine learning and computer vision, which plays a significant role in realistic scenarios due to its various applications in public security and video surveillance. However, previous methods mainly focus on the visual representation learning, while neglect to explore the potential of semantic features during training, which easily leads to poor generalization capability when adapted to the new domain. In this paper, we propose a Multi-Modal Equivalent Transformer called MMET for more robust visual-semantic embedding learning on visual, textual and visual-textual tasks respectively. To further enhance the robust feature learning in the context of transformer, a dynamic masking mechanism called Masked Multimodal Modeling strategy (MMM) is introduced to mask both the image patches and the text tokens, which can jointly works on multimodal or unimodal data and significantly boost the performance of generalizable person Re-ID. Extensive experiments on benchmark datasets demonstrate the competitive performance of our method over previous approaches. We hope this method could advance the research towards visual-semantic representation learning. Our source code is also publicly available at https://github.com/JeremyXSC/MMET

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Multi-Graph Convolution Network for Pose Forecasting

    Full text link
    Recently, there has been a growing interest in predicting human motion, which involves forecasting future body poses based on observed pose sequences. This task is complex due to modeling spatial and temporal relationships. The most commonly used models for this task are autoregressive models, such as recurrent neural networks (RNNs) or variants, and Transformer Networks. However, RNNs have several drawbacks, such as vanishing or exploding gradients. Other researchers have attempted to solve the communication problem in the spatial dimension by integrating Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) models. These works deal with temporal and spatial information separately, which limits the effectiveness. To fix this problem, we propose a novel approach called the multi-graph convolution network (MGCN) for 3D human pose forecasting. This model simultaneously captures spatial and temporal information by introducing an augmented graph for pose sequences. Multiple frames give multiple parts, joined together in a single graph instance. Furthermore, we also explore the influence of natural structure and sequence-aware attention to our model. In our experimental evaluation of the large-scale benchmark datasets, Human3.6M, AMSS and 3DPW, MGCN outperforms the state-of-the-art in pose prediction.Comment: arXiv admin note: text overlap with arXiv:2110.04573 by other author

    Ambiguous Medical Image Segmentation using Diffusion Models

    Full text link
    Collective insights from a group of experts have always proven to outperform an individual's best diagnostic for clinical tasks. For the task of medical image segmentation, existing research on AI-based alternatives focuses more on developing models that can imitate the best individual rather than harnessing the power of expert groups. In this paper, we introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights. Our proposed model generates a distribution of segmentation masks by leveraging the inherent stochastic sampling process of diffusion using only minimal additional learning. We demonstrate on three different medical image modalities- CT, ultrasound, and MRI that our model is capable of producing several possible variants while capturing the frequencies of their occurrences. Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks in terms of accuracy while preserving naturally occurring variation. We also propose a new metric to evaluate the diversity as well as the accuracy of segmentation predictions that aligns with the interest of clinical practice of collective insights

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Wav2code: Restore Clean Speech Representations via Codebook Lookup for Noise-Robust ASR

    Full text link
    Automatic speech recognition (ASR) has gained a remarkable success thanks to recent advances of deep learning, but it usually degrades significantly under real-world noisy conditions. Recent works introduce speech enhancement (SE) as front-end to improve speech quality, which is proved effective but may not be optimal for downstream ASR due to speech distortion problem. Based on that, latest works combine SE and currently popular self-supervised learning (SSL) to alleviate distortion and improve noise robustness. Despite the effectiveness, the speech distortion caused by conventional SE still cannot be completely eliminated. In this paper, we propose a self-supervised framework named Wav2code to implement a generalized SE without distortions for noise-robust ASR. First, in pre-training stage the clean speech representations from SSL model are sent to lookup a discrete codebook via nearest-neighbor feature matching, the resulted code sequence are then exploited to reconstruct the original clean representations, in order to store them in codebook as prior. Second, during finetuning we propose a Transformer-based code predictor to accurately predict clean codes by modeling the global dependency of input noisy representations, which enables discovery and restoration of high-quality clean representations without distortions. Furthermore, we propose an interactive feature fusion network to combine original noisy and the restored clean representations to consider both fidelity and quality, resulting in even more informative features for downstream ASR. Finally, experiments on both synthetic and real noisy datasets demonstrate that Wav2code can solve the speech distortion and improve ASR performance under various noisy conditions, resulting in stronger robustness.Comment: 12 pages, 7 figures, Submitted to IEEE/ACM TASL

    Quantifying and Explaining Machine Learning Uncertainty in Predictive Process Monitoring: An Operations Research Perspective

    Full text link
    This paper introduces a comprehensive, multi-stage machine learning methodology that effectively integrates information systems and artificial intelligence to enhance decision-making processes within the domain of operations research. The proposed framework adeptly addresses common limitations of existing solutions, such as the neglect of data-driven estimation for vital production parameters, exclusive generation of point forecasts without considering model uncertainty, and lacking explanations regarding the sources of such uncertainty. Our approach employs Quantile Regression Forests for generating interval predictions, alongside both local and global variants of SHapley Additive Explanations for the examined predictive process monitoring problem. The practical applicability of the proposed methodology is substantiated through a real-world production planning case study, emphasizing the potential of prescriptive analytics in refining decision-making procedures. This paper accentuates the imperative of addressing these challenges to fully harness the extensive and rich data resources accessible for well-informed decision-making

    CoRe-Sleep: A Multimodal Fusion Framework for Time Series Robust to Imperfect Modalities

    Full text link
    Sleep abnormalities can have severe health consequences. Automated sleep staging, i.e. labelling the sequence of sleep stages from the patient's physiological recordings, could simplify the diagnostic process. Previous work on automated sleep staging has achieved great results, mainly relying on the EEG signal. However, often multiple sources of information are available beyond EEG. This can be particularly beneficial when the EEG recordings are noisy or even missing completely. In this paper, we propose CoRe-Sleep, a Coordinated Representation multimodal fusion network that is particularly focused on improving the robustness of signal analysis on imperfect data. We demonstrate how appropriately handling multimodal information can be the key to achieving such robustness. CoRe-Sleep tolerates noisy or missing modalities segments, allowing training on incomplete data. Additionally, it shows state-of-the-art performance when testing on both multimodal and unimodal data using a single model on SHHS-1, the largest publicly available study that includes sleep stage labels. The results indicate that training the model on multimodal data does positively influence performance when tested on unimodal data. This work aims at bridging the gap between automated analysis tools and their clinical utility.Comment: 10 pages, 4 figures, 2 tables, journa
    corecore