2 research outputs found

    A Revisit on Deep Hashings for Large-scale Content Based Image Retrieval

    Full text link
    There is a growing trend in studying deep hashing methods for content-based image retrieval (CBIR), where hash functions and binary codes are learnt using deep convolutional neural networks and then the binary codes can be used to do approximate nearest neighbor (ANN) search. All the existing deep hashing papers report their methods' superior performance over the traditional hashing methods according to their experimental results. However, there are serious flaws in the evaluations of existing deep hashing papers: (1) The datasets they used are too small and simple to simulate the real CBIR situation. (2) They did not correctly include the search time in their evaluation criteria, while the search time is crucial in real CBIR systems. (3) The performance of some unsupervised hashing algorithms (e.g., LSH) can easily be boosted if one uses multiple hash tables, which is an important factor should be considered in the evaluation while most of the deep hashing papers failed to do so. We re-evaluate several state-of-the-art deep hashing methods with a carefully designed experimental setting. Empirical results reveal that the performance of these deep hashing methods are inferior to multi-table IsoH, a very simple unsupervised hashing method. Thus, the conclusions in all the deep hashing papers should be carefully re-examined

    Semantic Hierarchy Preserving Deep Hashing for Large-scale Image Retrieval

    Full text link
    Convolutional neural networks have been widely used in content-based image retrieval. To better deal with large-scale data, the deep hashing model is proposed as an effective method, which maps an image to a binary code that can be used for hashing search. However, most existing deep hashing models only utilize fine-level semantic labels or convert them to similar/dissimilar labels for training. The natural semantic hierarchy structures are ignored in the training stage of the deep hashing model. In this paper, we present an effective algorithm to train a deep hashing model that can preserve a semantic hierarchy structure for large-scale image retrieval. Experiments on two datasets show that our method improves the fine-level retrieval performance. Meanwhile, our model achieves state-of-the-art results in terms of hierarchical retrieval
    corecore