1,426 research outputs found

    Deep Structured Energy-Based Image Inpainting

    Full text link
    In this paper, we propose a structured image inpainting method employing an energy based model. In order to learn structural relationship between patterns observed in images and missing regions of the images, we employ an energy-based structured prediction method. The structural relationship is learned by minimizing an energy function which is defined by a simple convolutional neural network. The experimental results on various benchmark datasets show that our proposed method significantly outperforms the state-of-the-art methods which use Generative Adversarial Networks (GANs). We obtained 497.35 mean squared error (MSE) on the Olivetti face dataset compared to 833.0 MSE provided by the state-of-the-art method. Moreover, we obtained 28.4 dB peak signal to noise ratio (PSNR) on the SVHN dataset and 23.53 dB on the CelebA dataset, compared to 22.3 dB and 21.3 dB, provided by the state-of-the-art methods, respectively. The code is publicly available.Comment: Accepted to 24th International Conference on Pattern Recognition (ICPR 2018). 6 pages, 7 figure

    Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems

    Full text link
    Recently, deep learning approaches with various network architectures have achieved significant performance improvement over existing iterative reconstruction methods in various imaging problems. However, it is still unclear why these deep learning architectures work for specific inverse problems. To address these issues, here we show that the long-searched-for missing link is the convolution framelets for representing a signal by convolving local and non-local bases. The convolution framelets was originally developed to generalize the theory of low-rank Hankel matrix approaches for inverse problems, and this paper further extends the idea so that we can obtain a deep neural network using multilayer convolution framelets with perfect reconstruction (PR) under rectilinear linear unit nonlinearity (ReLU). Our analysis also shows that the popular deep network components such as residual block, redundant filter channels, and concatenated ReLU (CReLU) do indeed help to achieve the PR, while the pooling and unpooling layers should be augmented with high-pass branches to meet the PR condition. Moreover, by changing the number of filter channels and bias, we can control the shrinkage behaviors of the neural network. This discovery leads us to propose a novel theory for deep convolutional framelets neural network. Using numerical experiments with various inverse problems, we demonstrated that our deep convolution framelets network shows consistent improvement over existing deep architectures.This discovery suggests that the success of deep learning is not from a magical power of a black-box, but rather comes from the power of a novel signal representation using non-local basis combined with data-driven local basis, which is indeed a natural extension of classical signal processing theory.Comment: This will appear in SIAM Journal on Imaging Science

    Data recovery in computational fluid dynamics through deep image priors

    Full text link
    One of the challenges encountered by computational simulations at exascale is the reliability of simulations in the face of hardware and software faults. These faults, expected to increase with the complexity of the computational systems, will lead to the loss of simulation data and simulation failure and are currently addressed through a checkpoint-restart paradigm. Focusing specifically on computational fluid dynamics simulations, this work proposes a method that uses a deep convolutional neural network to recover simulation data. This data recovery method (i) is agnostic to the flow configuration and geometry, (ii) does not require extensive training data, and (iii) is accurate for very different physical flows. Results indicate that the use of deep image priors for data recovery is more accurate than standard recovery techniques, such as the Gaussian process regression, also known as Kriging. Data recovery is performed for two canonical fluid flows: laminar flow around a cylinder and homogeneous isotropic turbulence. For data recovery of the laminar flow around a cylinder, results indicate similar performance between the proposed method and Gaussian process regression across a wide range of mask sizes. For homogeneous isotropic turbulence, data recovery through the deep convolutional neural network exhibits an error in relevant turbulent quantities approximately three times smaller than that for the Gaussian process regression,. Forward simulations using recovered data illustrate that the enstrophy decay is captured within 10% using the deep convolutional neural network approach. Although demonstrated specifically for data recovery of fluid flows, this technique can be used in a wide range of applications, including particle image velocimetry, visualization, and computational simulations of physical processes beyond the Navier-Stokes equations

    Learning Energy Based Inpainting for Optical Flow

    Full text link
    Modern optical flow methods are often composed of a cascade of many independent steps or formulated as a black box neural network that is hard to interpret and analyze. In this work we seek for a plain, interpretable, but learnable solution. We propose a novel inpainting based algorithm that approaches the problem in three steps: feature selection and matching, selection of supporting points and energy based inpainting. To facilitate the inference we propose an optimization layer that allows to backpropagate through 10K iterations of a first-order method without any numerical or memory problems. Compared to recent state-of-the-art networks, our modular CNN is very lightweight and competitive with other, more involved, inpainting based methods

    Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions

    Full text link
    We apply the spike-and-slab Restricted Boltzmann Machine (ssRBM) to texture modeling. The ssRBM with tiled-convolution weight sharing (TssRBM) achieves or surpasses the state-of-the-art on texture synthesis and inpainting by parametric models. We also develop a novel RBM model with a spike-and-slab visible layer and binary variables in the hidden layer. This model is designed to be stacked on top of the TssRBM. We show the resulting deep belief network (DBN) is a powerful generative model that improves on single-layer models and is capable of modeling not only single high-resolution and challenging textures but also multiple textures

    A context encoder for audio inpainting

    Full text link
    We study the ability of deep neural networks (DNNs) to restore missing audio content based on its context, i.e., inpaint audio gaps. We focus on a condition which has not received much attention yet: gaps in the range of tens of milliseconds. We propose a DNN structure that is provided with the signal surrounding the gap in the form of time-frequency (TF) coefficients. Two DNNs with either complex-valued TF coefficient output or magnitude TF coefficient output were studied by separately training them on inpainting two types of audio signals (music and musical instruments) having 64-ms long gaps. The magnitude DNN outperformed the complex-valued DNN in terms of signal-to-noise ratios and objective difference grades. Although, for instruments, a reference inpainting obtained through linear predictive coding performed better in both metrics, it performed worse than the magnitude DNN for music. This demonstrates the potential of the magnitude DNN, in particular for inpainting signals that are more complex than single instrument sounds.Comment: Published in IEEE TASL

    Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet

    Full text link
    Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that a spatial-temporal generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-temporal filters to capture spatial-temporal patterns of different scales. The model can be learned from the training video sequences by an "analysis by synthesis" learning algorithm that iterates the following two steps. Step 1 synthesizes video sequences from the currently learned model. Step 2 then updates the model parameters based on the difference between the synthesized video sequences and the observed training sequences. We show that the learning algorithm can synthesize realistic dynamic patterns

    Detecting Anomalous Faces with 'No Peeking' Autoencoders

    Full text link
    Detecting anomalous faces has important applications. For example, a system might tell when a train driver is incapacitated by a medical event, and assist in adopting a safe recovery strategy. These applications are demanding, because they require accurate detection of rare anomalies that may be seen only at runtime. Such a setting causes supervised methods to perform poorly. We describe a method for detecting an anomalous face image that meets these requirements. We construct a feature vector that reliably has large entries for anomalous images, then use various simple unsupervised methods to score the image based on the feature. Obvious constructions (autoencoder codes; autoencoder residuals) are defeated by a 'peeking' behavior in autoencoders. Our feature construction removes rectangular patches from the image, predicts the likely content of the patch conditioned on the rest of the image using a specially trained autoencoder, then compares the result to the image. High scores suggest that the patch was difficult for an autoencoder to predict, and so is likely anomalous. We demonstrate that our method can identify real anomalous face images in pools of typical images, taken from celeb-A, that is much larger than usual in state-of-the-art experiments. A control experiment based on our method with another set of normal celebrity images - a 'typical set', but nonceleb-A are not identified as anomalous; confirms this is not due to special properties of celeb-A

    Incorporating long-range consistency in CNN-based texture generation

    Full text link
    Gatys et al. (2015) showed that pair-wise products of features in a convolutional network are a very effective representation of image textures. We propose a simple modification to that representation which makes it possible to incorporate long-range structure into image generation, and to render images that satisfy various symmetry constraints. We show how this can greatly improve rendering of regular textures and of images that contain other kinds of symmetric structure. We also present applications to inpainting and season transfer

    Texture Modelling with Nested High-order Markov-Gibbs Random Fields

    Full text link
    Currently, Markov-Gibbs random field (MGRF) image models which include high-order interactions are almost always built by modelling responses of a stack of local linear filters. Actual interaction structure is specified implicitly by the filter coefficients. In contrast, we learn an explicit high-order MGRF structure by considering the learning process in terms of general exponential family distributions nested over base models, so that potentials added later can build on previous ones. We relatively rapidly add new features by skipping over the costly optimisation of parameters. We introduce the use of local binary patterns as features in MGRF texture models, and generalise them by learning offsets to the surrounding pixels. These prove effective as high-order features, and are fast to compute. Several schemes for selecting high-order features by composition or search of a small subclass are compared. Additionally we present a simple modification of the maximum likelihood as a texture modelling-specific objective function which aims to improve generalisation by local windowing of statistics. The proposed method was experimentally evaluated by learning high-order MGRF models for a broad selection of complex textures and then performing texture synthesis, and succeeded on much of the continuum from stochastic through irregularly structured to near-regular textures. Learning interaction structure is very beneficial for textures with large-scale structure, although those with complex irregular structure still provide difficulties. The texture models were also quantitatively evaluated on two tasks and found to be competitive with other works: grading of synthesised textures by a panel of observers; and comparison against several recent MGRF models by evaluation on a constrained inpainting task.Comment: Submitted to Computer Vision and Image Understandin
    corecore