19,306 research outputs found

    Deep Structured Energy Based Models for Anomaly Detection

    Full text link
    In this paper, we attack the anomaly detection problem by directly modeling the data distribution with deep architectures. We propose deep structured energy based models (DSEBMs), where the energy function is the output of a deterministic deep neural network with structure. We develop novel model architectures to integrate EBMs with different types of data such as static data, sequential data, and spatial data, and apply appropriate model architectures to adapt to the data structure. Our training algorithm is built upon the recent development of score matching \cite{sm}, which connects an EBM with a regularized autoencoder, eliminating the need for complicated sampling method. Statistically sound decision criterion can be derived for anomaly detection purpose from the perspective of the energy landscape of the data distribution. We investigate two decision criteria for performing anomaly detection: the energy score and the reconstruction error. Extensive empirical studies on benchmark tasks demonstrate that our proposed model consistently matches or outperforms all the competing methods.Comment: To appear in ICML 201

    Crowded Scene Analysis: A Survey

    Full text link
    Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real world, crowded scene analysis has attracted much attention. However, the visual occlusions and ambiguities in crowded scenes, as well as the complex behaviors and scene semantics, make the analysis a challenging task. In the past few years, an increasing number of works on crowded scene analysis have been reported, covering different aspects including crowd motion pattern learning, crowd behavior and activity analysis, and anomaly detection in crowds. This paper surveys the state-of-the-art techniques on this topic. We first provide the background knowledge and the available features related to crowded scenes. Then, existing models, popular algorithms, evaluation protocols, as well as system performance are provided corresponding to different aspects of crowded scene analysis. We also outline the available datasets for performance evaluation. Finally, some research problems and promising future directions are presented with discussions.Comment: 20 pages in IEEE Transactions on Circuits and Systems for Video Technology, 201

    Deep Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams

    Full text link
    Analysis of an organization's computer network activity is a key component of early detection and mitigation of insider threat, a growing concern for many organizations. Raw system logs are a prototypical example of streaming data that can quickly scale beyond the cognitive power of a human analyst. As a prospective filter for the human analyst, we present an online unsupervised deep learning approach to detect anomalous network activity from system logs in real time. Our models decompose anomaly scores into the contributions of individual user behavior features for increased interpretability to aid analysts reviewing potential cases of insider threat. Using the CERT Insider Threat Dataset v6.2 and threat detection recall as our performance metric, our novel deep and recurrent neural network models outperform Principal Component Analysis, Support Vector Machine and Isolation Forest based anomaly detection baselines. For our best model, the events labeled as insider threat activity in our dataset had an average anomaly score in the 95.53 percentile, demonstrating our approach's potential to greatly reduce analyst workloads.Comment: Proceedings of AI for Cyber Security Workshop at AAAI 201

    Detection of Unknown Anomalies in Streaming Videos with Generative Energy-based Boltzmann Models

    Full text link
    Abnormal event detection is one of the important objectives in research and practical applications of video surveillance. However, there are still three challenging problems for most anomaly detection systems in practical setting: limited labeled data, ambiguous definition of "abnormal" and expensive feature engineering steps. This paper introduces a unified detection framework to handle these challenges using energy-based models, which are powerful tools for unsupervised representation learning. Our proposed models are firstly trained on unlabeled raw pixels of image frames from an input video rather than hand-crafted visual features; and then identify the locations of abnormal objects based on the errors between the input video and its reconstruction produced by the models. To handle video stream, we develop an online version of our framework, wherein the model parameters are updated incrementally with the image frames arriving on the fly. Our experiments show that our detectors, using Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs) as core modules, achieve superior anomaly detection performance to unsupervised baselines and obtain accuracy comparable with the state-of-the-art approaches when evaluating at the pixel-level. More importantly, we discover that our system trained with DBMs is able to simultaneously perform scene clustering and scene reconstruction. This capacity not only distinguishes our method from other existing detectors but also offers a unique tool to investigate and understand how the model works.Comment: This manuscript is under consideration at Pattern Recognition Letter

    Arbitrary Discrete Sequence Anomaly Detection with Zero Boundary LSTM

    Full text link
    We propose a simple mathematical definition and new neural architecture for finding anomalies within discrete sequence datasets. Our model comprises of a modified LSTM autoencoder and an array of One-Class SVMs. The LSTM takes in elements from a sequence and creates context vectors that are used to predict the probability distribution of the following element. These context vectors are then used to train an array of One-Class SVMs. These SVMs are used to determine an outlier boundary in context space.We show that our method is consistently more stable and also outperforms standard LSTM and sliding window anomaly detection systems on two generated datasets

    Robust Subspace Recovery Layer for Unsupervised Anomaly Detection

    Full text link
    We propose a neural network for unsupervised anomaly detection with a novel robust subspace recovery layer (RSR layer). This layer seeks to extract the underlying subspace from a latent representation of the given data and removes outliers that lie away from this subspace. It is used within an autoencoder. The encoder maps the data into a latent space, from which the RSR layer extracts the subspace. The decoder then smoothly maps back the underlying subspace to a "manifold" close to the original inliers. Inliers and outliers are distinguished according to the distances between the original and mapped positions (small for inliers and large for outliers). Extensive numerical experiments with both image and document datasets demonstrate state-of-the-art precision and recall.Comment: This work is on the ICLR 2020 conferenc

    Transformation Based Deep Anomaly Detection in Astronomical Images

    Full text link
    In this work, we propose several enhancements to a geometric transformation based model for anomaly detection in images (GeoTranform). The model assumes that the anomaly class is unknown and that only inlier samples are available for training. We introduce new filter based transformations useful for detecting anomalies in astronomical images, that highlight artifact properties to make them more easily distinguishable from real objects. In addition, we propose a transformation selection strategy that allows us to find indistinguishable pairs of transformations. This results in an improvement of the area under the Receiver Operating Characteristic curve (AUROC) and accuracy performance, as well as in a dimensionality reduction. The models were tested on astronomical images from the High Cadence Transient Survey (HiTS) and Zwicky Transient Facility (ZTF) datasets. The best models obtained an average AUROC of 99.20% for HiTS and 91.39% for ZTF. The improvement over the original GeoTransform algorithm and baseline methods such as One-Class Support Vector Machine, and deep learning based methods is significant both statistically and in practice.Comment: 8 pages, 6 figures, 4 tables. Accepted for publication in proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI), Glasgow, UK, 19-24 July, 202

    Deep Learning in Information Security

    Full text link
    Machine learning has a long tradition of helping to solve complex information security problems that are difficult to solve manually. Machine learning techniques learn models from data representations to solve a task. These data representations are hand-crafted by domain experts. Deep Learning is a sub-field of machine learning, which uses models that are composed of multiple layers. Consequently, representations that are used to solve a task are learned from the data instead of being manually designed. In this survey, we study the use of DL techniques within the domain of information security. We systematically reviewed 77 papers and presented them from a data-centric perspective. This data-centric perspective reflects one of the most crucial advantages of DL techniques -- domain independence. If DL-methods succeed to solve problems on a data type in one domain, they most likely will also succeed on similar data from another domain. Other advantages of DL methods are unrivaled scalability and efficiency, both regarding the number of examples that can be analyzed as well as with respect of dimensionality of the input data. DL methods generally are capable of achieving high-performance and generalize well. However, information security is a domain with unique requirements and challenges. Based on an analysis of our reviewed papers, we point out shortcomings of DL-methods to those requirements and discuss further research opportunities

    Fence GAN: Towards Better Anomaly Detection

    Full text link
    Anomaly detection is a classical problem where the aim is to detect anomalous data that do not belong to the normal data distribution. Current state-of-the-art methods for anomaly detection on complex high-dimensional data are based on the generative adversarial network (GAN). However, the traditional GAN loss is not directly aligned with the anomaly detection objective: it encourages the distribution of the generated samples to overlap with the real data and so the resulting discriminator has been found to be ineffective as an anomaly detector. In this paper, we propose simple modifications to the GAN loss such that the generated samples lie at the boundary of the real data distribution. With our modified GAN loss, our anomaly detection method, called Fence GAN (FGAN), directly uses the discriminator score as an anomaly threshold. Our experimental results using the MNIST, CIFAR10 and KDD99 datasets show that Fence GAN yields the best anomaly classification accuracy compared to state-of-the-art methods

    Anomaly scores for generative models

    Full text link
    Reconstruction error is a prevalent score used to identify anomalous samples when data are modeled by generative models, such as (variational) auto-encoders or generative adversarial networks. This score relies on the assumption that normal samples are located on a manifold and all anomalous samples are located outside. Since the manifold can be learned only where the training data lie, there are no guarantees how the reconstruction error behaves elsewhere and the score, therefore, seems to be ill-defined. This work defines an anomaly score that is theoretically compatible with generative models, and very natural for (variational) auto-encoders as they seem to be prevalent. The new score can be also used to select hyper-parameters and models. Finally, we explain why reconstruction error delivers good experimental results despite weak theoretical justification.Comment: 9 pages, 3 figures, submitted to NeurIPS 201
    • …
    corecore