2 research outputs found

    Change Detection in Multi-temporal VHR Images Based on Deep Siamese Multi-scale Convolutional Networks

    Full text link
    Very-high-resolution (VHR) images can provide abundant ground details and spatial geometric information. Change detection in multi-temporal VHR images plays a significant role in urban expansion and area internal change analysis. Nevertheless, traditional change detection methods can neither take full advantage of spatial context information nor cope with the complex internal heterogeneity of VHR images. In this paper, a powerful feature extraction model entitled multi-scale feature convolution unit (MFCU) is adopted for change detection in multi-temporal VHR images. MFCU can extract multi-scale spatial-spectral features in the same layer. Based on the unit two novel deep siamese convolutional neural networks, called as deep siamese multi-scale convolutional network (DSMS-CN) and deep siamese multi-scale fully convolutional network (DSMS-FCN), are designed for unsupervised and supervised change detection, respectively. For unsupervised change detection, an automatic pre-classification is implemented to obtain reliable training samples, then DSMS-CN fits the statistical distribution of changed and unchanged areas from selected training samples through MFCU modules and deep siamese architecture. For supervised change detection, the end-to-end deep fully convolutional network DSMS-FCN is trained in any size of multi-temporal VHR images, and directly outputs the binary change map. In addition, for the purpose of solving the inaccurate localization problem, the fully connected conditional random field (FC-CRF) is combined with DSMS-FCN to refine the results. The experimental results with challenging data sets confirm that the two proposed architectures perform better than the state-of-the-art methods

    DSDANet: Deep Siamese Domain Adaptation Convolutional Neural Network for Cross-domain Change Detection

    Full text link
    Change detection (CD) is one of the most vital applications in remote sensing. Recently, deep learning has achieved promising performance in the CD task. However, the deep models are task-specific and CD data set bias often exists, hence it is inevitable that deep CD models would suffer degraded performance after transferring it from original CD data set to new ones, making manually label numerous samples in the new data set unavoidable, which costs a large amount of time and human labor. How to learn a transferable CD model in the data set with enough labeled data (original domain) but can well detect changes in another data set without labeled data (target domain)? This is defined as the cross-domain change detection problem. In this paper, we propose a novel deep siamese domain adaptation convolutional neural network (DSDANet) architecture for cross-domain CD. In DSDANet, a siamese convolutional neural network first extracts spatial-spectral features from multi-temporal images. Then, through multi-kernel maximum mean discrepancy (MK-MMD), the learned feature representation is embedded into a reproducing kernel Hilbert space (RKHS), in which the distribution of two domains can be explicitly matched. By optimizing the network parameters and kernel coefficients with the source labeled data and target unlabeled data, DSDANet can learn transferrable feature representation that can bridge the discrepancy between two domains. To the best of our knowledge, it is the first time that such a domain adaptation-based deep network is proposed for CD. The theoretical analysis and experimental results demonstrate the effectiveness and potential of the proposed method
    corecore