30 research outputs found

    Network On Network for Tabular Data Classification in Real-world Applications

    Full text link
    Tabular data is the most common data format adopted by our customers ranging from retail, finance to E-commerce, and tabular data classification plays an essential role to their businesses. In this paper, we present Network On Network (NON), a practical tabular data classification model based on deep neural network to provide accurate predictions. Various deep methods have been proposed and promising progress has been made. However, most of them use operations like neural network and factorization machines to fuse the embeddings of different features directly, and linearly combine the outputs of those operations to get the final prediction. As a result, the intra-field information and the non-linear interactions between those operations (e.g. neural network and factorization machines) are ignored. Intra-field information is the information that features inside each field belong to the same field. NON is proposed to take full advantage of intra-field information and non-linear interactions. It consists of three components: field-wise network at the bottom to capture the intra-field information, across field network in the middle to choose suitable operations data-drivenly, and operation fusion network on the top to fuse outputs of the chosen operations deeply. Extensive experiments on six real-world datasets demonstrate NON can outperform the state-of-the-art models significantly. Furthermore, both qualitative and quantitative study of the features in the embedding space show NON can capture intra-field information effectively

    STGIN: Spatial-Temporal Graph Interaction Network for Large-scale POI Recommendation

    Full text link
    In Location-Based Services, Point-Of-Interest(POI) recommendation plays a crucial role in both user experience and business opportunities. Graph neural networks have been proven effective in providing personalized POI recommendation services. However, there are still two critical challenges. First, existing graph models attempt to capture users' diversified interests through a unified graph, which limits their ability to express interests in various spatial-temporal contexts. Second, the efficiency limitations of graph construction and graph sampling in large-scale systems make it difficult to adapt quickly to new real-time interests. To tackle the above challenges, we propose a novel Spatial-Temporal Graph Interaction Network. Specifically, we construct subgraphs of spatial, temporal, spatial-temporal, and global views respectively to precisely characterize the user's interests in various contexts. In addition, we design an industry-friendly framework to track the user's latest interests. Extensive experiments on the real-world dataset show that our method outperforms state-of-the-art models. This work has been successfully deployed in a large e-commerce platform, delivering a 1.1% CTR and 6.3% RPM improvement.Comment: accepted by CIKM 202

    AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction

    Full text link
    Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models

    KAST: Knowledge Aware Adaptive Session Multi-Topic Network for Click-Through Rate Prediction

    Full text link
    Capturing the evolving trends of user interest is important for both recommendation systems and advertising systems, and user behavior sequences have been successfully used in Click-Through-Rate(CTR) prediction problems. However, if the user interest is learned on the basis of item-level behaviors, the performance may be affected by the following two issues. Firstly, some casual outliers might be included in the behavior sequences as user behaviors are likely to be diverse. Secondly, the span of time intervals between user behaviors is random and irregular, for which a RNN-based module employed from NLP is not perfectly adaptive. To handle these two issues, we propose the Knowledge aware Adaptive Session multi-Topic network(KAST). It can adaptively segment user sessions from the whole user behavior sequence, and maintain similar intents in the same session. Furthermore, in order to improve the quality of session segmentation and representation, a knowledge-aware module is introduced so that the structural information from the user-item interaction can be extracted in an end-to-end manner, and a marginal based loss with these information is merged into the major loss. Through extensive experiments on public benchmarks, we demonstrate that KAST can achieve superior performance than state-of-the-art methods for CTR prediction, and key modules and hyper-parameters are also evaluated

    MTBRN: Multiplex Target-Behavior Relation Enhanced Network for Click-Through Rate Prediction

    Full text link
    Click-through rate (CTR) prediction is a critical task for many industrial systems, such as display advertising and recommender systems. Recently, modeling user behavior sequences attracts much attention and shows great improvements in the CTR field. Existing works mainly exploit attention mechanism based on embedding product when considering relations between user behaviors and target item. However, this methodology lacks of concrete semantics and overlooks the underlying reasons driving a user to click on a target item. In this paper, we propose a new framework named Multiplex Target-Behavior Relation enhanced Network (MTBRN) to leverage multiplex relations between user behaviors and target item to enhance CTR prediction. Multiplex relations consist of meaningful semantics, which can bring a better understanding on users' interests from different perspectives. To explore and model multiplex relations, we propose to incorporate various graphs (e.g., knowledge graph and item-item similarity graph) to construct multiple relational paths between user behaviors and target item. Then Bi-LSTM is applied to encode each path in the path extractor layer. A path fusion network and a path activation network are devised to adaptively aggregate and finally learn the representation of all paths for CTR prediction. Extensive offline and online experiments clearly verify the effectiveness of our framework.Comment: Accepted by CIKM202
    corecore