15 research outputs found

    Generating Explainable and Effective Data Descriptors Using Relational Learning: Application to Cancer Biology

    Get PDF
    The key to success in machine learning is the use of effective data representations. The success of deep neural networks (DNNs) is based on their ability to utilize multiple neural network layers, and big data, to learn how to convert simple input representations into richer internal representations that are effective for learning. However, these internal representations are sub-symbolic and difficult to explain. In many scientific problems explainable models are required, and the input data is semantically complex and unsuitable for DNNs. This is true in the fundamental problem of understanding the mechanism of cancer drugs, which requires complex background knowledge about the functions of genes/proteins, their cells, and the molecular structure of the drugs. This background knowledge cannot be compactly expressed propositionally, and requires at least the expressive power of Datalog. Here we demonstrate the use of relational learning to generate new data descriptors in such semantically complex background knowledge. These new descriptors are effective: adding them to standard propositional learning methods significantly improves prediction accuracy. They are also explainable, and add to our understanding of cancer. Our approach can readily be expanded to include other complex forms of background knowledge, and combines the generality of relational learning with the efficiency of standard propositional learning

    To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods

    Get PDF
    The main objective of eXplainable Artificial Intelligence (XAI) is to provide effective explanations for black-box classifiers. The existing literature lists many desirable properties for explanations to be useful, but there is no consensus on how to quantitatively evaluate explanations in practice. Moreover, explanations are typically used only to inspect black-box models, and the proactive use of explanations as a decision support is generally overlooked. Among the many approaches to XAI, a widely adopted paradigm is Local Linear Explanations - with LIME and SHAP emerging as state-of-the-art methods. We show that these methods are plagued by many defects including unstable explanations, divergence of actual implementations from the promised theoretical properties, and explanations for the wrong label. This highlights the need to have standard and unbiased evaluation procedures for Local Linear Explanations in the XAI field. In this paper we address the problem of identifying a clear and unambiguous set of metrics for the evaluation of Local Linear Explanations. This set includes both existing and novel metrics defined specifically for this class of explanations. All metrics have been included in an open Python framework, named LEAF. The purpose of LEAF is to provide a reference for end users to evaluate explanations in a standardised and unbiased way, and to guide researchers towards developing improved explainable techniques.Comment: 16 pages, 8 figure
    corecore