3,659 research outputs found

    Deep Reinforcement Learning for Join Order Enumeration

    Full text link
    Join order selection plays a significant role in query performance. However, modern query optimizers typically employ static join enumeration algorithms that do not receive any feedback about the quality of the resulting plan. Hence, optimizers often repeatedly choose the same bad plan, as they do not have a mechanism for "learning from their mistakes". In this paper, we argue that existing deep reinforcement learning techniques can be applied to address this challenge. These techniques, powered by artificial neural networks, can automatically improve decision making by incorporating feedback from their successes and failures. Towards this goal, we present ReJOIN, a proof-of-concept join enumerator, and present preliminary results indicating that ReJOIN can match or outperform the PostgreSQL optimizer in terms of plan quality and join enumeration efficiency

    Estimating Cardinalities with Deep Sketches

    Full text link
    We introduce Deep Sketches, which are compact models of databases that allow us to estimate the result sizes of SQL queries. Deep Sketches are powered by a new deep learning approach to cardinality estimation that can capture correlations between columns, even across tables. Our demonstration allows users to define such sketches on the TPC-H and IMDb datasets, monitor the training process, and run ad-hoc queries against trained sketches. We also estimate query cardinalities with HyPer and PostgreSQL to visualize the gains over traditional cardinality estimators.Comment: To appear in SIGMOD'1

    Neo: A Learned Query Optimizer

    Full text link
    Query optimization is one of the most challenging problems in database systems. Despite the progress made over the past decades, query optimizers remain extremely complex components that require a great deal of hand-tuning for specific workloads and datasets. Motivated by this shortcoming and inspired by recent advances in applying machine learning to data management challenges, we introduce Neo (Neural Optimizer), a novel learning-based query optimizer that relies on deep neural networks to generate query executions plans. Neo bootstraps its query optimization model from existing optimizers and continues to learn from incoming queries, building upon its successes and learning from its failures. Furthermore, Neo naturally adapts to underlying data patterns and is robust to estimation errors. Experimental results demonstrate that Neo, even when bootstrapped from a simple optimizer like PostgreSQL, can learn a model that offers similar performance to state-of-the-art commercial optimizers, and in some cases even surpass them

    Learned Cardinalities: Estimating Correlated Joins with Deep Learning

    Get PDF
    We describe a new deep learning approach to cardinality estimation. MSCN is a multi-set convolutional network, tailored to representing relational query plans, that employs set semantics to capture query features and true cardinalities. MSCN builds on sampling-based estimation, addressing its weaknesses when no sampled tuples qualify a predicate, and in capturing join-crossing correlations. Our evaluation of MSCN using a real-world dataset shows that deep learning significantly enhances the quality of cardinality estimation, which is the core problem in query optimization.Comment: CIDR 2019. https://github.com/andreaskipf/learnedcardinalitie
    corecore