25,105 research outputs found

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Tactics of Adversarial Attack on Deep Reinforcement Learning Agents

    Full text link
    We introduce two tactics to attack agents trained by deep reinforcement learning algorithms using adversarial examples, namely the strategically-timed attack and the enchanting attack. In the strategically-timed attack, the adversary aims at minimizing the agent's reward by only attacking the agent at a small subset of time steps in an episode. Limiting the attack activity to this subset helps prevent detection of the attack by the agent. We propose a novel method to determine when an adversarial example should be crafted and applied. In the enchanting attack, the adversary aims at luring the agent to a designated target state. This is achieved by combining a generative model and a planning algorithm: while the generative model predicts the future states, the planning algorithm generates a preferred sequence of actions for luring the agent. A sequence of adversarial examples is then crafted to lure the agent to take the preferred sequence of actions. We apply the two tactics to the agents trained by the state-of-the-art deep reinforcement learning algorithm including DQN and A3C. In 5 Atari games, our strategically timed attack reduces as much reward as the uniform attack (i.e., attacking at every time step) does by attacking the agent 4 times less often. Our enchanting attack lures the agent toward designated target states with a more than 70% success rate. Videos are available at http://yenchenlin.me/adversarial_attack_RL/Comment: To Appear at IJCAI 2017. Project website: http://yenchenlin.me/adversarial_attack_RL

    Two Can Play That Game: An Adversarial Evaluation of a Cyber-alert Inspection System

    Full text link
    Cyber-security is an important societal concern. Cyber-attacks have increased in numbers as well as in the extent of damage caused in every attack. Large organizations operate a Cyber Security Operation Center (CSOC), which form the first line of cyber-defense. The inspection of cyber-alerts is a critical part of CSOC operations. A recent work, in collaboration with Army Research Lab, USA proposed a reinforcement learning (RL) based approach to prevent the cyber-alert queue length from growing large and overwhelming the defender. Given the potential deployment of this approach to CSOCs run by US defense agencies, we perform a red team (adversarial) evaluation of this approach. Further, with the recent attacks on learning systems, it is even more important to test the limits of this RL approach. Towards that end, we learn an adversarial alert generation policy that is a best response to the defender inspection policy. Surprisingly, we find the defender policy to be quite robust to the best response of the attacker. In order to explain this observation, we extend the earlier RL model to a game model and show that there exists defender policies that can be robust against any adversarial policy. We also derive a competitive baseline from the game theory model and compare it to the RL approach. However, we go further to exploit assumptions made in the MDP in the RL model and discover an attacker policy that overwhelms the defender. We use a double oracle approach to retrain the defender with episodes from this discovered attacker policy. This made the defender robust to the discovered attacker policy and no further harmful attacker policies were discovered. Overall, the adversarial RL and double oracle approach in RL are general techniques that are applicable to other RL usage in adversarial environments

    Deep Neural Networks in High Frequency Trading

    Full text link
    The ability to give precise and fast prediction for the price movement of stocks is the key to profitability in High Frequency Trading. The main objective of this paper is to propose a novel way of modeling the high frequency trading problem using Deep Neural Networks at its heart and to argue why Deep Learning methods can have a lot of potential in the field of High Frequency Trading. The paper goes on to analyze the model's performance based on it's prediction accuracy as well as prediction speed across full-day trading simulations.Comment: Submitted in IEEE Transactions on Neural Networks and Learning Systems. Copyright 2018 IEE

    Mitigation of Policy Manipulation Attacks on Deep Q-Networks with Parameter-Space Noise

    Full text link
    Recent developments have established the vulnerability of deep reinforcement learning to policy manipulation attacks via intentionally perturbed inputs, known as adversarial examples. In this work, we propose a technique for mitigation of such attacks based on addition of noise to the parameter space of deep reinforcement learners during training. We experimentally verify the effect of parameter-space noise in reducing the transferability of adversarial examples, and demonstrate the promising performance of this technique in mitigating the impact of whitebox and blackbox attacks at both test and training times.Comment: arXiv admin note: substantial text overlap with arXiv:1701.04143, arXiv:1712.0934

    Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning

    Full text link
    The game of Chinese Checkers is a challenging traditional board game of perfect information that differs from other traditional games in two main aspects: first, unlike Chess, all checkers remain indefinitely in the game and hence the branching factor of the search tree does not decrease as the game progresses; second, unlike Go, there are also no upper bounds on the depth of the search tree since repetitions and backward movements are allowed. Therefore, even in a restricted game instance, the state-space of the game can still be unbounded, making it challenging for a computer program to excel. In this work, we present an approach that effectively combines the use of heuristics, Monte Carlo tree search, and deep reinforcement learning for building a Chinese Checkers agent without the use of any human game-play data. Experiment results show that our agent is competent under different scenarios and reaches the level of experienced human players

    Deep Reinforcement learning for real autonomous mobile robot navigation in indoor environments

    Full text link
    Deep Reinforcement Learning has been successfully applied in various computer games [8]. However, it is still rarely used in real-world applications, especially for the navigation and continuous control of real mobile robots [13]. Previous approaches lack safety and robustness and/or need a structured environment. In this paper we present our proof of concept for autonomous self-learning robot navigation in an unknown environment for a real robot without a map or planner. The input for the robot is only the fused data from a 2D laser scanner and a RGB-D camera as well as the orientation to the goal. The map of the environment is unknown. The output actions of an Asynchronous Advantage Actor-Critic network (GA3C) are the linear and angular velocities for the robot. The navigator/controller network is pretrained in a high-speed, parallel, and self-implemented simulation environment to speed up the learning process and then deployed to the real robot. To avoid overfitting, we train relatively small networks, and we add random Gaussian noise to the input laser data. The sensor data fusion with the RGB-D camera allows the robot to navigate in real environments with real 3D obstacle avoidance and without the need to fit the environment to the sensory capabilities of the robot. To further increase the robustness, we train on environments of varying difficulties and run 32 training instances simultaneously. Video: supplementary File / YouTube, Code: GitHubComment: 7 pages, repor

    Adaptive Power System Emergency Control using Deep Reinforcement Learning

    Full text link
    Power system emergency control is generally regarded as the last safety net for grid security and resiliency. Existing emergency control schemes are usually designed off-line based on either the conceived "worst" case scenario or a few typical operation scenarios. These schemes are facing significant adaptiveness and robustness issues as increasing uncertainties and variations occur in modern electrical grids. To address these challenges, for the first time, this paper developed novel adaptive emergency control schemes using deep reinforcement learning (DRL), by leveraging the high-dimensional feature extraction and non-linear generalization capabilities of DRL for complex power systems. Furthermore, an open-source platform named RLGC has been designed for the first time to assist the development and benchmarking of DRL algorithms for power system control. Details of the platform and DRL-based emergency control schemes for generator dynamic braking and under-voltage load shedding are presented. Extensive case studies performed in both two-area four-machine system and IEEE 39-Bus system have demonstrated the excellent performance and robustness of the proposed schemes.Comment: 12 page

    Whatever Does Not Kill Deep Reinforcement Learning, Makes It Stronger

    Full text link
    Recent developments have established the vulnerability of deep Reinforcement Learning (RL) to policy manipulation attacks via adversarial perturbations. In this paper, we investigate the robustness and resilience of deep RL to training-time and test-time attacks. Through experimental results, we demonstrate that under noncontiguous training-time attacks, Deep Q-Network (DQN) agents can recover and adapt to the adversarial conditions by reactively adjusting the policy. Our results also show that policies learned under adversarial perturbations are more robust to test-time attacks. Furthermore, we compare the performance of ϵ\epsilon-greedy and parameter-space noise exploration methods in terms of robustness and resilience against adversarial perturbations.Comment: arXiv admin note: text overlap with arXiv:1701.0414

    Deep Model Predictive Control with Online Learning for Complex Physical Systems

    Full text link
    The control of complex systems is of critical importance in many branches of science, engineering, and industry. Controlling an unsteady fluid flow is particularly important, as flow control is a key enabler for technologies in energy (e.g., wind, tidal, and combustion), transportation (e.g., planes, trains, and automobiles), security (e.g., tracking airborne contamination), and health (e.g., artificial hearts and artificial respiration). However, the high-dimensional, nonlinear, and multi-scale dynamics make real-time feedback control infeasible. Fortunately, these high-dimensional systems exhibit dominant, low-dimensional patterns of activity that can be exploited for effective control in the sense that knowledge of the entire state of a system is not required. Advances in machine learning have the potential to revolutionize flow control given its ability to extract principled, low-rank feature spaces characterizing such complex systems. We present a novel deep learning model predictive control (DeepMPC) framework that exploits low-rank features of the flow in order to achieve considerable improvements to control performance. Instead of predicting the entire fluid state, we use a recurrent neural network (RNN) to accurately predict the control relevant quantities of the system. The RNN is then embedded into a MPC framework to construct a feedback loop, and incoming sensor data is used to perform online updates to improve prediction accuracy. The results are validated using varying fluid flow examples of increasing complexity
    corecore