16,471 research outputs found

    Learning to Play General Video-Games via an Object Embedding Network

    Full text link
    Deep reinforcement learning (DRL) has proven to be an effective tool for creating general video-game AI. However most current DRL video-game agents learn end-to-end from the video-output of the game, which is superfluous for many applications and creates a number of additional problems. More importantly, directly working on pixel-based raw video data is substantially distinct from what a human player does.In this paper, we present a novel method which enables DRL agents to learn directly from object information. This is obtained via use of an object embedding network (OEN) that compresses a set of object feature vectors of different lengths into a single fixed-length unified feature vector representing the current game-state and fulfills the DRL simultaneously. We evaluate our OEN-based DRL agent by comparing to several state-of-the-art approaches on a selection of games from the GVG-AI Competition. Experimental results suggest that our object-based DRL agent yields performance comparable to that of those approaches used in our comparative study.Comment: To appear in IEEE CIG201

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    AI for Classic Video Games using Reinforcement Learning

    Get PDF
    Deep reinforcement learning is a technique to teach machines tasks based on trial and error experiences in the way humans learn. In this paper, some preliminary research is done to understand how reinforcement learning and deep learning techniques can be combined to train an agent to play Archon, a classic video game. We compare two methods to estimate a Q function, the function used to compute the best action to take at each point in the game. In the first approach, we used a Q table to store the states and weights of the corresponding actions. In our experiments, this method converged very slowly. Our second approach was similar to that of [1]: We used a convolutional neural network (CNN) to determine a Q function. This deep neural network model successfully learnt to control the Archon player using keyboard event that it generated. We observed that the second approaches Q function converged faster than the first. For the latter method, the neural net was trained only using prediodic screenshots taken while it was playing. Experiments were conducted on a machine that did not have a GPU, so our training was slower as compared to [1]
    corecore