778 research outputs found

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    A Review on Computational Intelligence Techniques in Cloud and Edge Computing

    Get PDF
    Cloud computing (CC) is a centralized computing paradigm that accumulates resources centrally and provides these resources to users through Internet. Although CC holds a large number of resources, it may not be acceptable by real-time mobile applications, as it is usually far away from users geographically. On the other hand, edge computing (EC), which distributes resources to the network edge, enjoys increasing popularity in the applications with low-latency and high-reliability requirements. EC provides resources in a decentralized manner, which can respond to users’ requirements faster than the normal CC, but with limited computing capacities. As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading, which significantly influence the performance of the whole system. To tackle these issues, many optimization problems have been formulated. These optimization problems usually have complex properties, such as non-convexity and NP-hardness, which may not be addressed by the traditional convex optimization-based solutions. Computational intelligence (CI), consisting of a set of nature-inspired computational approaches, recently exhibits great potential in addressing these optimization problems in CC and EC. This article provides an overview of research problems in CC and EC and recent progresses in addressing them with the help of CI techniques. Informative discussions and future research trends are also presented, with the aim of offering insights to the readers and motivating new research directions

    Dynamic Resource Allocation Model for Distribution Operations using SDN

    Get PDF
    In vehicular ad-hoc networks, autonomous vehicles generate a large amount of data prior to support in-vehicle applications. So, a big storage and high computation platform is needed. On the other hand, the computation for vehicular networks at the cloud platform requires low latency. Applying edge computation (EC) as a new computing paradigm has potentials to provide computation services while reducing the latency and improving the total utility. We propose a three-tier EC framework to set the elastic calculating processing capacity and dynamic route calculation to suitable edge servers for real-time vehicle monitoring. This framework includes the cloud computation layer, EC layer, and device layer. The formulation of resource allocation approach is similar to an optimization problem. We design a new reinforcement learning (RL) algorithm to deal with resource allocation problem assisted by cloud computation. By integration of EC and software defined networking (SDN), this study provides a new software defined networking edge (SDNE) framework for resource assignment in vehicular networks. The novelty of this work is to design a multi-agent RL-based approach using experience reply. The proposed algorithm stores the users’ communication information and the network tracks’ state in real-time. The results of simulation with various system factors are presented to display the efficiency of the suggested framework. We present results with a real-world case study
    • …
    corecore