3 research outputs found

    Deep Radar Waveform Design for Efficient Automotive Radar Sensing

    Full text link
    In radar systems, unimodular (or constant-modulus) waveform design plays an important role in achieving better clutter/interference rejection, as well as a more accurate estimation of the target parameters. The design of such sequences has been studied widely in the last few decades, with most design algorithms requiring sophisticated a priori knowledge of environmental parameters which may be difficult to obtain in real-time scenarios. In this paper, we propose a novel hybrid model-driven and data-driven architecture that adapts to the ever changing environment and allows for adaptive unimodular waveform design. In particular, the approach lays the groundwork for developing extremely low-cost waveform design and processing frameworks for radar systems deployed in autonomous vehicles. The proposed model-based deep architecture imitates a well-known unimodular signal design algorithm in its structure, and can quickly infer statistical information from the environment using the observed data. Our numerical experiments portray the advantages of using the proposed method for efficient radar waveform design in time-varying environments

    Efficient Waveform Covariance Matrix Design and Antenna Selection for MIMO Radar

    Full text link
    Controlling the radar beam-pattern by optimizing the transmit covariance matrix is a well-established approach for performance enhancement in multiple-input-multiple-output (MIMO) radars. In this paper, we investigate the joint optimization of the waveform covariance matrix and the antenna position vector for a MIMO radar system to approximate a given transmit beam-pattern, as well as to minimize the cross-correlation between the probing signals at a number of given target locations. We formulate this design task as a non-convex optimization problem and then propose a cyclic optimization approach to efficiently approximate its solution. We further propose a local binary search algorithm in order to efficiently design the corresponding antenna positions. We show that the proposed method can be extended to the more general case of approximating the given beam-pattern using a minimal number of antennas as well as optimizing their positions. Our numerical investigations demonstrate a great performance both in terms of accuracy and computational complexity, making the proposed framework a good candidate for usage in real-time radar waveform processing applications such as MIMO radar transmit beamforming for aerial drones that are in motion.Comment: arXiv admin note: text overlap with arXiv:1910.0759

    Unfolded Algorithms for Deep Phase Retrieval

    Full text link
    Exploring the idea of phase retrieval has been intriguing researchers for decades, due to its appearance in a wide range of applications. The task of a phase retrieval algorithm is typically to recover a signal from linear phaseless measurements. In this paper, we approach the problem by proposing a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval (UPR), that exhibits significant potential in improving the performance of state-of-the art data-driven and model-based phase retrieval algorithms. The proposed method benefits from versatility and interpretability of well-established model-based algorithms, while simultaneously benefiting from the expressive power of deep neural networks. In particular, our proposed model-based deep architecture is applied to the conventional phase retrieval problem (via the incremental reshaped Wirtinger flow algorithm) and the sparse phase retrieval problem (via the sparse truncated amplitude flow algorithm), showing immense promise in both cases. Furthermore, we consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process. Our numerical results illustrate the effectiveness of such hybrid model-based and data-driven frameworks and showcase the untapped potential of data-aided methodologies to enhance the existing phase retrieval algorithms
    corecore