482 research outputs found

    Leaning Robust Sequence Features via Dynamic Temporal Pattern Discovery

    Get PDF
    As a major type of data, time series possess invaluable latent knowledge for describing the real world and human society. In order to improve the ability of intelligent systems for understanding the world and people, it is critical to design sophisticated machine learning algorithms for extracting robust time series features from such latent knowledge. Motivated by the successful applications of deep learning in computer vision, more and more machine learning researchers put their attentions on the topic of applying deep learning techniques to time series data. However, directly employing current deep models in most time series domains could be problematic. A major reason is that temporal pattern types that current deep models are aiming at are very limited, which cannot meet the requirement of modeling different underlying patterns of data coming from various sources. In this study we address this problem by designing different network structures explicitly based on specific domain knowledge such that we can extract features via most salient temporal patterns. More specifically, we mainly focus on two types of temporal patterns: order patterns and frequency patterns. For order patterns, which are usually related to brain and human activities, we design a hashing-based neural network layer to globally encode the ordinal pattern information into the resultant features. It is further generalized into a specially designed Recurrent Neural Networks (RNN) cell which can learn order patterns in an online fashion. On the other hand, we believe audio-related data such as music and speech can benefit from modeling frequency patterns. Thus, we do so by developing two types of RNN cells. The first type tries to directly learn the long-term dependencies on frequency domain rather than time domain. The second one aims to dynamically filter out the noise frequencies based on temporal contexts. By proposing various deep models based on different domain knowledge and evaluating them on extensive time series tasks, we hope this work can provide inspirations for others and increase the community\u27s interests on the problem of applying deep learning techniques to more time series tasks

    MESH : a flexible manifold-embedded semantic hashing for cross-modal retrieval

    Get PDF
    Hashing based methods for cross-modal retrieval has been widely explored in recent years. However, most of them mainly focus on the preservation of neighborhood relationship and label consistency, while ignore the proximity of neighbors and proximity of classes, which degrades the discrimination of hash codes. And most of them learn hash codes and hashing functions simultaneously, which limits the flexibility of algorithms. To address these issues, in this article, we propose a two-step cross-modal retrieval method named Manifold-Embedded Semantic Hashing (MESH). It exploits Local Linear Embedding to model the neighborhood proximity and uses class semantic embeddings to consider the proximity of classes. By so doing, MESH can not only extract the manifold structure in different modalities, but also can embed the class semantic information into hash codes to further improve the discrimination of learned hash codes. Moreover, the two-step scheme makes MESH flexible to various hashing functions. Extensive experimental results on three datasets show that MESH is superior to 10 state-of-the-art cross-modal hashing methods. Moreover, MESH also demonstrates superiority on deep features compared with the deep cross-modal hashing method. © 2013 IEEE
    • …
    corecore