4 research outputs found

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods

    Asymmetric Deep Semantic Quantization for Image Retrieval

    Full text link
    Due to its fast retrieval and storage efficiency capabilities, hashing has been widely used in nearest neighbor retrieval tasks. By using deep learning based techniques, hashing can outperform non-learning based hashing technique in many applications. However, we argue that the current deep learning based hashing methods ignore some critical problems (e.g., the learned hash codes are not discriminative due to the hashing methods being unable to discover rich semantic information and the training strategy having difficulty optimizing the discrete binary codes). In this paper, we propose a novel image hashing method, termed as \textbf{\underline{A}}symmetric \textbf{\underline{D}}eep \textbf{\underline{S}}emantic \textbf{\underline{Q}}uantization (\textbf{ADSQ}). \textbf{ADSQ} is implemented using three stream frameworks, which consist of one \emph{LabelNet} and two \emph{ImgNets}. The \emph{LabelNet} leverages the power of three fully-connected layers, which are used to capture rich semantic information between image pairs. For the two \emph{ImgNets}, they each adopt the same convolutional neural network structure, but with different weights (i.e., asymmetric convolutional neural networks). The two \emph{ImgNets} are used to generate discriminative compact hash codes. Specifically, the function of the \emph{LabelNet} is to capture rich semantic information that is used to guide the two \emph{ImgNets} in minimizing the gap between the real-continuous features and the discrete binary codes. Furthermore, \textbf{ADSQ} can utilize the most critical semantic information to guide the feature learning process and consider the consistency of the common semantic space and Hamming space. Experimental results on three benchmarks (i.e., CIFAR-10, NUS-WIDE, and ImageNet) demonstrate that the proposed \textbf{ADSQ} can outperforms current state-of-the-art methods.Comment: Accepted to IEEE ACCESS. arXiv admin note: text overlap with arXiv:1812.0140

    Deep Semantic Multimodal Hashing Network for Scalable Multimedia Retrieval

    Full text link
    Hashing has been widely applied to multimodal retrieval on large-scale multimedia data due to its efficiency in computation and storage. Particularly, deep hashing has received unprecedented research attention in recent years, owing to its perfect retrieval performance. However, most of existing deep hashing methods learn binary hash codes by preserving the similarity relationship while without exploiting the semantic labels of data points, which result in suboptimal binary codes. In this work, we propose a novel Deep Semantic Multimodal Hashing Network for scalable multimodal retrieval. In DSMHN, two sets of modality-specific hash functions are jointly learned by explicitly preserving both the inter-modality similarities and the intra-modality semantic labels. Specifically, with the assumption that the learned hash codes should be optimal for task-specific classification, two stream networks are jointly trained to learn the hash functions by embedding the semantic labels on the resultant hash codes. Different from previous deep hashing methods, which are tied to some particular forms of loss functions, the proposed deep hashing framework can be flexibly integrated with different types of loss functions. In addition, the bit balance property is investigated to generate binary codes with each bit having 50% probability to be 1 or -1. Moreover, a unified deep multimodal hashing framework is proposed to learn compact and high-quality hash codes by exploiting the feature representation learning, inter-modality similarity preserving learning, semantic label preserving learning and hash functions learning with bit balanced constraint simultaneously. We conduct extensive experiments for both unimodal and cross-modal retrieval tasks on three widely-used multimodal retrieval datasets. The experimental result demonstrates that DSMHN significantly outperforms state-of-the-art methods.Comment: 13 page

    A Survey on Deep Hashing Methods

    Full text link
    Nearest neighbor search is to find the data points in the database such that the distances from them to the query are the smallest, which is a fundamental problem in various domains, such as computer vision, recommendation systems and machine learning. Hashing is one of the most widely used methods for its computational and storage efficiency. With the development of deep learning, deep hashing methods show more advantages than traditional methods. In this paper, we present a comprehensive survey of the deep hashing algorithms. Specifically, we categorize deep supervised hashing methods into pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, classification-oriented preserving as well as quantization according to the manners of preserving the similarities. In addition, we also introduce some other topics such as deep unsupervised hashing and multi-modal deep hashing methods. Meanwhile, we also present some commonly used public datasets and the scheme to measure the performance of deep hashing algorithms. Finally, we discussed some potential research directions in conclusion.Comment: 20 pages, 1 figur
    corecore