71,069 research outputs found

    CRF Learning with CNN Features for Image Segmentation

    Full text link
    Conditional Random Rields (CRF) have been widely applied in image segmentations. While most studies rely on hand-crafted features, we here propose to exploit a pre-trained large convolutional neural network (CNN) to generate deep features for CRF learning. The deep CNN is trained on the ImageNet dataset and transferred to image segmentations here for constructing potentials of superpixels. Then the CRF parameters are learnt using a structured support vector machine (SSVM). To fully exploit context information in inference, we construct spatially related co-occurrence pairwise potentials and incorporate them into the energy function. This prefers labelling of object pairs that frequently co-occur in a certain spatial layout and at the same time avoids implausible labellings during the inference. Extensive experiments on binary and multi-class segmentation benchmarks demonstrate the promise of the proposed method. We thus provide new baselines for the segmentation performance on the Weizmann horse, Graz-02, MSRC-21, Stanford Background and PASCAL VOC 2011 datasets

    Deep Structured Models for Large Scale Object Co-detection and Segmentation

    Get PDF
    Structured decisions are often required for a large variety of image and scene understanding tasks in computer vision, with few of them being object detection, localization, semantic segmentation and many more. Structured prediction deals with learning inherent structure by incorporating contextual information from several images and multiple tasks. However, it is very challenging when dealing with large scale image datasets where performance is limited by high computational costs and expressive power of the underlying representation learning techniques. In this thesis, we present efficient and effective deep structured models for context-aware object detection, co-localization and instance-level semantic segmentation. First, we introduce a principled formulation for object co-detection using a fully-connected conditional random field (CRF). We build an explicit graph whose vertices represent object candidates (instead of pixel values) and edges encode the object similarity via simple, yet effective pairwise potentials. More specifically, we design a weighted mixture of Gaussian kernels for class-specific object similarity, and formulate kernel weights estimation as a least-squares regression problem. Its solution can therefore be obtained in closed-form. Furthermore, in contrast with traditional co-detection approaches, it has been shown that inference in such fully-connected CRFs can be performed efficiently using an approximate mean-field method with high-dimensional Gaussian filtering. This lets us effectively leverage information in multiple images. Next, we extend our class-specific co-detection framework to multiple object categories. We model object candidates with rich, high-dimensional features learned using a deep convolutional neural network. In particular, our max-margin and directloss structural boosting algorithms enable us to learn the most suitable features that best encode pairwise similarity relationships within our CRF framework. Furthermore, it guarantees that the time and space complexity is O(n t) where n is the total number of candidate boxes in the pool and t the number of mean-field iterations. Moreover, our experiments evidence the importance of learning rich similarity measures to account for the contextual relations across object classes and instances. However, all these methods are based on precomputed object candidates (or proposals), thus localization performance is limited by the quality of bounding-boxes. To address this, we present an efficient object proposal co-generation technique that leverages the collective power of multiple images. In particular, we design a deep neural network layer that takes unary and pairwise features as input, builds a fully-connected CRF and produces mean-field marginals as output. It also lets us backpropagate the gradient through entire network by unrolling the iterations of CRF inference. Furthermore, this layer simplifies the end-to-end learning, thus effectively benefiting from multiple candidates to co-generate high-quality object proposals. Finally, we develop a multi-task strategy to jointly learn object detection, localization and instance-level semantic segmentation in a single network. In particular, we introduce a novel representation based on the distance transform of the object masks. To this end, we design a new residual-deconvolution architecture that infers such a representation and decodes it into the final binary object mask. We show that the predicted masks can go beyond the scope of the bounding boxes and that the multiple tasks can benefit from each other. In summary, in this thesis, we exploit the joint power of multiple images as well as multiple tasks to improve generalization performance of structured learning. Our novel deep structured models, similarity learning techniques and residual-deconvolution architecture can be used to make accurate and reliable inference for key vision tasks. Furthermore, our quantitative and qualitative experiments on large scale challenging image datasets demonstrate the superiority of the proposed approaches over the state-of-the-art methods

    Exploring Subtasks of Scene Understanding: Challenges and Cross-Modal Analysis

    Get PDF
    Scene understanding is one of the most important problems in computer vision. It consists of many subtasks such as image classification for describing an image with one word, object detection for finding and localizing objects of interest in the image and assigning a category to each of them, semantic segmentation for assigning a category to each pixel of an image, instance segmentation for finding and localizing objects of interest and marking all the pixels belonging to each object, depth estimation for estimating the distance of each pixel in the image from the camera, etc. Each of these tasks has its advantages and limitations. These tasks have a common goal to achieve that is to understand and describe a scene captured in an image or a set of images. One common question is if there is any synergy between these tasks. Therefore, alongside single task approaches, there is a line of research on how to learn multiple tasks jointly. In this thesis, we explore different subtasks of scene understanding and propose mainly deep learning-based approaches to improve these tasks. First, we propose a modular Convolutional Neural Network (CNN) architecture for jointly training semantic segmentation and depth estimation tasks. We provide a setup suitable to analyze the cross-modality influence between these tasks for different architecture designs. Then, we utilize object detection and instance segmentation as auxiliary tasks for focusing on target objects in complex tasks of scene flow estimation and object 6d pose estimation. Furthermore, we propose a novel deep approach for object co-segmentation which is the task of segmenting common objects in a set of images. Finally, we introduce a novel pooling layer that preserves the spatial information while capturing a large receptive field. This pooling layer is designed for improving the dense prediction tasks such as semantic segmentation and depth estimation
    • …
    corecore