3,479 research outputs found

    Unbiased Math Word Problems Benchmark for Mitigating Solving Bias

    Full text link
    In this paper, we revisit the solving bias when evaluating models on current Math Word Problem (MWP) benchmarks. However, current solvers exist solving bias which consists of data bias and learning bias due to biased dataset and improper training strategy. Our experiments verify MWP solvers are easy to be biased by the biased training datasets which do not cover diverse questions for each problem narrative of all MWPs, thus a solver can only learn shallow heuristics rather than deep semantics for understanding problems. Besides, an MWP can be naturally solved by multiple equivalent equations while current datasets take only one of the equivalent equations as ground truth, forcing the model to match the labeled ground truth and ignoring other equivalent equations. Here, we first introduce a novel MWP dataset named UnbiasedMWP which is constructed by varying the grounded expressions in our collected data and annotating them with corresponding multiple new questions manually. Then, to further mitigate learning bias, we propose a Dynamic Target Selection (DTS) Strategy to dynamically select more suitable target expressions according to the longest prefix match between the current model output and candidate equivalent equations which are obtained by applying commutative law during training. The results show that our UnbiasedMWP has significantly fewer biases than its original data and other datasets, posing a promising benchmark for fairly evaluating the solvers' reasoning skills rather than matching nearest neighbors. And the solvers trained with our DTS achieve higher accuracies on multiple MWP benchmarks. The source code is available at https://github.com/yangzhch6/UnbiasedMWP

    Non-Autoregressive Math Word Problem Solver with Unified Tree Structure

    Full text link
    Existing MWP solvers employ sequence or binary tree to present the solution expression and decode it from given problem description. However, such structures fail to handle the variants that can be derived via mathematical manipulation, e.g., (a1+a2)βˆ—a3(a_1+a_2) * a_3 and a1βˆ—a3+a2βˆ—a3a_1 * a_3+a_2 * a_3 can both be possible valid solutions for a same problem but formulated as different expression sequences or trees. The multiple solution variants depicting different possible solving procedures for the same input problem would raise two issues: 1) making it hard for the model to learn the mapping function between the input and output spaces effectively, and 2) wrongly indicating \textit{wrong} when evaluating a valid expression variant. To address these issues, we introduce a unified tree structure to present a solution expression, where the elements are permutable and identical for all the expression variants. We propose a novel non-autoregressive solver, named \textit{MWP-NAS}, to parse the problem and deduce the solution expression based on the unified tree. For evaluating the possible expression variants, we design a path-based metric to evaluate the partial accuracy of expressions of a unified tree. The results from extensive experiments conducted on Math23K and MAWPS demonstrate the effectiveness of our proposed MWP-NAS. The codes and checkpoints are available at: \url{https://github.com/mengqunhan/MWP-NAS}.Comment: Accepted at EMNLP202
    • …
    corecore