649,784 research outputs found

    Deep-learning-based data page classification for holographic memory

    Full text link
    We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multi-layer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some noise and are randomly laterally shifted. The MLP was found to have a classification accuracy of 91.58%, whereas the deep neural network was able to classify data pages at an accuracy of 99.98%. The accuracy of the deep neural network is two orders of magnitude better than the MLP

    Spectrum-based deep neural networks for fraud detection

    Full text link
    In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (called as spectral coordinate) in the low dimensional spectral space of the graph's adjacency matrix as input of deep neural networks. Spectral coordinates in the spectral space capture the most useful topology information of the network. Due to the small dimension of spectral coordinates (compared with the dimension of the adjacency matrix derived from a graph), training deep neural networks becomes feasible. We develop and evaluate two neural networks, deep autoencoder and convolutional neural network, in our fraud detection framework. Experimental results on a real signed graph show that our spectrum based deep neural networks are effective in fraud detection
    corecore