392,254 research outputs found

    On Network Science and Mutual Information for Explaining Deep Neural Networks

    Full text link
    In this paper, we present a new approach to interpret deep learning models. By coupling mutual information with network science, we explore how information flows through feedforward networks. We show that efficiently approximating mutual information allows us to create an information measure that quantifies how much information flows between any two neurons of a deep learning model. To that end, we propose NIF, Neural Information Flow, a technique for codifying information flow that exposes deep learning model internals and provides feature attributions.Comment: ICASSP 2020 (shorter version appeared at AAAI-19 Workshop on Network Interpretability for Deep Learning

    Mutual Exclusivity Loss for Semi-Supervised Deep Learning

    Full text link
    In this paper we consider the problem of semi-supervised learning with deep Convolutional Neural Networks (ConvNets). Semi-supervised learning is motivated on the observation that unlabeled data is cheap and can be used to improve the accuracy of classifiers. In this paper we propose an unsupervised regularization term that explicitly forces the classifier's prediction for multiple classes to be mutually-exclusive and effectively guides the decision boundary to lie on the low density space between the manifolds corresponding to different classes of data. Our proposed approach is general and can be used with any backpropagation-based learning method. We show through different experiments that our method can improve the object recognition performance of ConvNets using unlabeled data.Comment: 5 pages, 1 figures, ICIP 201

    Deep Mutual Learning

    Get PDF
    Model distillation is an effective and widely used technique to transfer knowledge from a teacher to a student network. The typical application is to transfer from a powerful large network or ensemble to a small network, that is better suited to low-memory or fast execution requirements. In this paper, we present a deep mutual learning (DML) strategy where, rather than one way transfer between a static pre-defined teacher and a student, an ensemble of students learn collaboratively and teach each other throughout the training process. Our experiments show that a variety of network architectures benefit from mutual learning and achieve compelling results on CIFAR-100 recognition and Market-1501 person re-identification benchmarks. Surprisingly, it is revealed that no prior powerful teacher network is necessary -- mutual learning of a collection of simple student networks works, and moreover outperforms distillation from a more powerful yet static teacher.Comment: 10 pages, 4 figure
    • …
    corecore