51,460 research outputs found

    DRIBO: Robust Deep Reinforcement Learning via Multi-View Information Bottleneck

    Full text link
    Deep reinforcement learning (DRL) agents are often sensitive to visual changes that were unseen in their training environments. To address this problem, we leverage the sequential nature of RL to learn robust representations that encode only task-relevant information from observations based on the unsupervised multi-view setting. Specifically, we introduce an auxiliary objective based on the multi-view in-formation bottleneck (MIB) principle which quantifies the amount of task-irrelevant information and encourages learning representations that are both predictive of the future and less sensitive to task-irrelevant distractions. This enables us to train high-performance policies that are robust to visual distractions and can generalize to unseen environments. We demonstrate that our approach can achieve SOTA performance on diverse visual control tasks on the DeepMind Control Suite, even when the background is replaced with natural videos. In addition, we show that our approach outperforms well-established baselines for generalization to unseen environments on the Procgen benchmark. Our code is open-sourced and available at https://github.com/JmfanBU/DRIBO.Comment: 27 page

    Efficient and Effective Deep Multi-view Subspace Clustering

    Full text link
    Recent multi-view subspace clustering achieves impressive results utilizing deep networks, where the self-expressive correlation is typically modeled by a fully connected (FC) layer. However, they still suffer from two limitations. i) The parameter scale of the FC layer is quadratic to sample numbers, resulting in high time and memory costs that significantly degrade their feasibility in large-scale datasets. ii) It is under-explored to extract a unified representation that simultaneously satisfies minimal sufficiency and discriminability. To this end, we propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E2^2MVSC). Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency. Most importantly, the proposed method devises a multi-type auto-encoder to explicitly decouple consistent, complementary, and superfluous information from every view, which is supervised by a soft clustering assignment similarity constraint. Following information bottleneck theory and the maximal coding rate reduction principle, a sufficient yet minimal unified representation can be obtained, as well as pursuing intra-cluster aggregation and inter-cluster separability within it. Extensive experiments show that E2^2MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets

    Deep Variational Multivariate Information Bottleneck -- A Framework for Variational Losses

    Full text link
    Variational dimensionality reduction methods are known for their high accuracy, generative abilities, and robustness. We introduce a framework to unify many existing variational methods and design new ones. The framework is based on an interpretation of the multivariate information bottleneck, in which an encoder graph, specifying what information to compress, is traded-off against a decoder graph, specifying a generative model. Using this framework, we rederive existing dimensionality reduction methods including the deep variational information bottleneck and variational auto-encoders. The framework naturally introduces a trade-off parameter extending the deep variational CCA (DVCCA) family of algorithms to beta-DVCCA. We derive a new method, the deep variational symmetric informational bottleneck (DVSIB), which simultaneously compresses two variables to preserve information between their compressed representations. We implement these algorithms and evaluate their ability to produce shared low dimensional latent spaces on Noisy MNIST dataset. We show that algorithms that are better matched to the structure of the data (in our case, beta-DVCCA and DVSIB) produce better latent spaces as measured by classification accuracy, dimensionality of the latent variables, and sample efficiency. We believe that this framework can be used to unify other multi-view representation learning algorithms and to derive and implement novel problem-specific loss functions

    InfiNet: Fully Convolutional Networks for Infant Brain MRI Segmentation

    Full text link
    We present a novel, parameter-efficient and practical fully convolutional neural network architecture, termed InfiNet, aimed at voxel-wise semantic segmentation of infant brain MRI images at iso-intense stage, which can be easily extended for other segmentation tasks involving multi-modalities. InfiNet consists of double encoder arms for T1 and T2 input scans that feed into a joint-decoder arm that terminates in the classification layer. The novelty of InfiNet lies in the manner in which the decoder upsamples lower resolution input feature map(s) from multiple encoder arms. Specifically, the pooled indices computed in the max-pooling layers of each of the encoder blocks are related to the corresponding decoder block to perform non-linear learning-free upsampling. The sparse maps are concatenated with intermediate encoder representations (skip connections) and convolved with trainable filters to produce dense feature maps. InfiNet is trained end-to-end to optimize for the Generalized Dice Loss, which is well-suited for high class imbalance. InfiNet achieves the whole-volume segmentation in under 50 seconds and we demonstrate competitive performance against multiple state-of-the art deep architectures and their multi-modal variants.Comment: 4 pages, 3 figures, conference, IEEE ISBI, 201

    End-to-End Audiovisual Fusion with LSTMs

    Full text link
    Several end-to-end deep learning approaches have been recently presented which simultaneously extract visual features from the input images and perform visual speech classification. However, research on jointly extracting audio and visual features and performing classification is very limited. In this work, we present an end-to-end audiovisual model based on Bidirectional Long Short-Term Memory (BLSTM) networks. To the best of our knowledge, this is the first audiovisual fusion model which simultaneously learns to extract features directly from the pixels and spectrograms and perform classification of speech and nonlinguistic vocalisations. The model consists of multiple identical streams, one for each modality, which extract features directly from mouth regions and spectrograms. The temporal dynamics in each stream/modality are modeled by a BLSTM and the fusion of multiple streams/modalities takes place via another BLSTM. An absolute improvement of 1.9% in the mean F1 of 4 nonlingusitic vocalisations over audio-only classification is reported on the AVIC database. At the same time, the proposed end-to-end audiovisual fusion system improves the state-of-the-art performance on the AVIC database leading to a 9.7% absolute increase in the mean F1 measure. We also perform audiovisual speech recognition experiments on the OuluVS2 database using different views of the mouth, frontal to profile. The proposed audiovisual system significantly outperforms the audio-only model for all views when the acoustic noise is high.Comment: Accepted to AVSP 2017. arXiv admin note: substantial text overlap with arXiv:1709.00443 and text overlap with arXiv:1701.0584
    • …
    corecore