89,112 research outputs found

    Deep Manifold Prior

    Full text link
    We present a prior for manifold structured data, such as surfaces of 3D shapes, where deep neural networks are adopted to reconstruct a target shape using gradient descent starting from a random initialization. We show that surfaces generated this way are smooth, with limiting behavior characterized by Gaussian processes, and we mathematically derive such properties for fully-connected as well as convolutional networks. We demonstrate our method in a variety of manifold reconstruction applications, such as point cloud denoising and interpolation, achieving considerably better results against competitive baselines while requiring no training data. We also show that when training data is available, our method allows developing alternate parametrizations of surfaces under the framework of AtlasNet, leading to a compact network architecture and better reconstruction results on standard image to shape reconstruction benchmarks.Comment: 22 pages, 12 figure

    Deep nets for local manifold learning

    Full text link
    The problem of extending a function ff defined on a training data C\mathcal{C} on an unknown manifold X\mathbb{X} to the entire manifold and a tubular neighborhood of this manifold is considered in this paper. For X\mathbb{X} embedded in a high dimensional ambient Euclidean space RD\mathbb{R}^D, a deep learning algorithm is developed for finding a local coordinate system for the manifold {\bf without eigen--decomposition}, which reduces the problem to the classical problem of function approximation on a low dimensional cube. Deep nets (or multilayered neural networks) are proposed to accomplish this approximation scheme by using the training data. Our methods do not involve such optimization techniques as back--propagation, while assuring optimal (a priori) error bounds on the output in terms of the number of derivatives of the target function. In addition, these methods are universal, in that they do not require a prior knowledge of the smoothness of the target function, but adjust the accuracy of approximation locally and automatically, depending only upon the local smoothness of the target function. Our ideas are easily extended to solve both the pre--image problem and the out--of--sample extension problem, with a priori bounds on the growth of the function thus extended.Comment: Submitted on Sept. 17, 201

    Dual-constrained Deep Semi-Supervised Coupled Factorization Network with Enriched Prior

    Full text link
    Nonnegative matrix factorization is usually powerful for learning the "shallow" parts-based representation, but it clearly fails to discover deep hierarchical information within both the basis and representation spaces. In this paper, we technically propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net, for learning the hierarchical coupled representations. To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network. Specifically, DS2CF-Net designs a deep coupled factorization architecture using multi-layers of linear transformations, which coupled updates the bases and new representations in each layer. To improve the discriminating ability of learned deep representations and deep coefficients, our network clearly considers enriching the supervised prior by the joint deep coefficients-regularized label prediction, and incorporates enriched prior information as additional label and structure constraints. The label constraint can enable the samples of the same label to have the same coordinate in the new feature space, while the structure constraint forces the coefficient matrices in each layer to be block-diagonal so that the enhanced prior using the self-expressive label propagation are more accurate. Our network also integrates the adaptive dual-graph learning to retain the local manifold structures of both the data manifold and feature manifold by minimizing the reconstruction errors in each layer. Extensive experiments on several real databases demonstrate that our DS2CF-Net can obtain state-of-the-art performance for representation learning and clustering

    Low dose CT reconstruction assisted by an image manifold prior

    Full text link
    X-ray Computed Tomography (CT) is an important tool in medical imaging to obtain a direct visualization of patient anatomy. However, the x-ray radiation exposure leads to the concern of lifetime cancer risk. Low-dose CT scan can reduce the radiation exposure to patient while the image quality is usually degraded due to the appearance of noise and artifacts. Numerous studies have been conducted to regularize CT image for better image quality. Yet, exploring the underlying manifold where real CT images residing on is still an open problem. In this paper, we propose a fully data-driven manifold learning approach by incorporating the emerging deep-learning technology. An encoder-decoder convolutional neural network has been established to map a CT image to the inherent low-dimensional manifold, as well as to restore the CT image from its corresponding manifold representation. A novel reconstruction algorithm assisted by the leant manifold prior has been developed to achieve high quality low-dose CT reconstruction. In order to demonstrate the effectiveness of the proposed framework, network training, testing, and comprehensive simulation study have been performed using patient abdomen CT images. The trained encoder-decoder CNN is capable of restoring high-quality CT images with average error of ~20 HU. Furthermore, the proposed manifold prior assisted reconstruction scheme achieves high-quality low-dose CT reconstruction, with average reconstruction error of < 30 HU, more than five times and two times lower than that of filtered back projection method and total-variation based iterative reconstruction method, respectively

    Variational Diffusion Autoencoders with Random Walk Sampling

    Full text link
    Variational autoencoders (VAEs) and generative adversarial networks (GANs) enjoy an intuitive connection to manifold learning: in training the decoder/generator is optimized to approximate a homeomorphism between the data distribution and the sampling space. This is a construction that strives to define the data manifold. A major obstacle to VAEs and GANs, however, is choosing a suitable prior that matches the data topology. Well-known consequences of poorly picked priors are posterior and mode collapse. To our knowledge, no existing method sidesteps this user choice. Conversely, diffusion maps\textit{diffusion maps} automatically infer the data topology and enjoy a rigorous connection to manifold learning, but do not scale easily or provide the inverse homeomorphism (i.e. decoder/generator). We propose a method that combines these approaches into a generative model that inherits the asymptotic guarantees of diffusion maps\textit{diffusion maps} while preserving the scalability of deep models. We prove approximation theoretic results for the dimension dependence of our proposed method. Finally, we demonstrate the effectiveness of our method with various real and synthetic datasets.Comment: 24 pages, 9 figures, 1 table; accepted to ECCV 202

    SphereFace: Deep Hypersphere Embedding for Face Recognition

    Full text link
    This paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. However, few existing algorithms can effectively achieve this criterion. To this end, we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features. Geometrically, A-Softmax loss can be viewed as imposing discriminative constraints on a hypersphere manifold, which intrinsically matches the prior that faces also lie on a manifold. Moreover, the size of angular margin can be quantitatively adjusted by a parameter mm. We further derive specific mm to approximate the ideal feature criterion. Extensive analysis and experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace Challenge show the superiority of A-Softmax loss in FR tasks. The code has also been made publicly available.Comment: CVPR 2017 (v4: updated the Appendix

    Markov-Lipschitz Deep Learning

    Full text link
    We propose a novel framework, called Markov-Lipschitz deep learning (MLDL), to tackle geometric deterioration caused by collapse, twisting, or crossing in vector-based neural network transformations for manifold-based representation learning and manifold data generation. A prior constraint, called locally isometric smoothness (LIS), is imposed across-layers and encoded into a Markov random field (MRF)-Gibbs distribution. This leads to the best possible solutions for local geometry preservation and robustness as measured by locally geometric distortion and locally bi-Lipschitz continuity. Consequently, the layer-wise vector transformations are enhanced into well-behaved, LIS-constrained metric homeomorphisms. Extensive experiments, comparisons, and ablation study demonstrate significant advantages of MLDL for manifold learning and manifold data generation. MLDL is general enough to enhance any vector transformation-based networks. The code is available at https://github.com/westlake-cairi/Markov-Lipschitz-Deep-Learning

    Manifold Modeling in Embedded Space: A Perspective for Interpreting Deep Image Prior

    Full text link
    Deep image prior (DIP), which utilizes a deep convolutional network (ConvNet) structure itself as an image prior, has attracted attentions in computer vision and machine learning communities. It empirically shows the effectiveness of ConvNet structure for various image restoration applications. However, why the DIP works so well is still unknown, and why convolution operation is useful for image reconstruction or enhancement is not very clear. In this study, we tackle these questions. The proposed approach is dividing the convolution into ``delay-embedding'' and ``transformation (\ie encoder-decoder)'', and proposing a simple, but essential, image/tensor modeling method which is closely related to dynamical systems and self-similarity. The proposed method named as manifold modeling in embedded space (MMES) is implemented by using a novel denoising-auto-encoder in combination with multi-way delay-embedding transform. In spite of its simplicity, the image/tensor completion, super-resolution, deconvolution, and denoising results of MMES are quite similar even competitive to DIP in our extensive experiments, and these results would help us for reinterpreting/characterizing the DIP from a perspective of ``low-dimensional patch-manifold prior''

    Embedding-reparameterization procedure for manifold-valued latent variables in generative models

    Full text link
    Conventional prior for Variational Auto-Encoder (VAE) is a Gaussian distribution. Recent works demonstrated that choice of prior distribution affects learning capacity of VAE models. We propose a general technique (embedding-reparameterization procedure, or ER) for introducing arbitrary manifold-valued variables in VAE model. We compare our technique with a conventional VAE on a toy benchmark problem. This is work in progress.Comment: Presented at Bayesian Deep Learning workshop (NeurIPS 2018

    Probabilistic Regression of Rotations using Quaternion Averaging and a Deep Multi-Headed Network

    Full text link
    Accurate estimates of rotation are crucial to vision-based motion estimation in augmented reality and robotics. In this work, we present a method to extract probabilistic estimates of rotation from deep regression models. First, we build on prior work and argue that a multi-headed network structure we name HydraNet provides better calibrated uncertainty estimates than methods that rely on stochastic forward passes. Second, we extend HydraNet to targets that belong to the rotation group, SO(3), by regressing unit quaternions and using the tools of rotation averaging and uncertainty injection onto the manifold to produce three-dimensional covariances. Finally, we present results and analysis on a synthetic dataset, learn consistent orientation estimates on the 7-Scenes dataset, and show how we can use our learned covariances to fuse deep estimates of relative orientation with classical stereo visual odometry to improve localization on the KITTI dataset.Comment: A shortened version of this work appears in the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'19) Workshop on Uncertainty and Robustness in Deep Visual Learning, Long Beach, California, USA, Jun. 16-20 2019, pp. 83-8
    • …
    corecore