17 research outputs found

    Deep Long Short-Term Memory Adaptive Beamforming Networks For Multichannel Robust Speech Recognition

    Full text link
    Far-field speech recognition in noisy and reverberant conditions remains a challenging problem despite recent deep learning breakthroughs. This problem is commonly addressed by acquiring a speech signal from multiple microphones and performing beamforming over them. In this paper, we propose to use a recurrent neural network with long short-term memory (LSTM) architecture to adaptively estimate real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions which results in a set of timevarying room impulse responses. The LSTM adaptive beamformer is jointly trained with a deep LSTM acoustic model to predict senone labels. Further, we use hidden units in the deep LSTM acoustic model to assist in predicting the beamforming filter coefficients. The proposed system achieves 7.97% absolute gain over baseline systems with no beamforming on CHiME-3 real evaluation set.Comment: in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    Attentive Adversarial Learning for Domain-Invariant Training

    Full text link
    Adversarial domain-invariant training (ADIT) proves to be effective in suppressing the effects of domain variability in acoustic modeling and has led to improved performance in automatic speech recognition (ASR). In ADIT, an auxiliary domain classifier takes in equally-weighted deep features from a deep neural network (DNN) acoustic model and is trained to improve their domain-invariance by optimizing an adversarial loss function. In this work, we propose an attentive ADIT (AADIT) in which we advance the domain classifier with an attention mechanism to automatically weight the input deep features according to their importance in domain classification. With this attentive re-weighting, AADIT can focus on the domain normalization of phonetic components that are more susceptible to domain variability and generates deep features with improved domain-invariance and senone-discriminativity over ADIT. Most importantly, the attention block serves only as an external component to the DNN acoustic model and is not involved in ASR, so AADIT can be used to improve the acoustic modeling with any DNN architectures. More generally, the same methodology can improve any adversarial learning system with an auxiliary discriminator. Evaluated on CHiME-3 dataset, the AADIT achieves 13.6% and 9.3% relative WER improvements, respectively, over a multi-conditional model and a strong ADIT baseline.Comment: 5 pages, 1 figure, ICASSP 201

    Conditional Teacher-Student Learning

    Full text link
    The teacher-student (T/S) learning has been shown to be effective for a variety of problems such as domain adaptation and model compression. One shortcoming of the T/S learning is that a teacher model, not always perfect, sporadically produces wrong guidance in form of posterior probabilities that misleads the student model towards a suboptimal performance. To overcome this problem, we propose a conditional T/S learning scheme, in which a "smart" student model selectively chooses to learn from either the teacher model or the ground truth labels conditioned on whether the teacher can correctly predict the ground truth. Unlike a naive linear combination of the two knowledge sources, the conditional learning is exclusively engaged with the teacher model when the teacher model's prediction is correct, and otherwise backs off to the ground truth. Thus, the student model is able to learn effectively from the teacher and even potentially surpass the teacher. We examine the proposed learning scheme on two tasks: domain adaptation on CHiME-3 dataset and speaker adaptation on Microsoft short message dictation dataset. The proposed method achieves 9.8% and 12.8% relative word error rate reductions, respectively, over T/S learning for environment adaptation and speaker-independent model for speaker adaptation.Comment: 5 pages, 1 figure, ICASSP 201

    Speaker Adaptation for Attention-Based End-to-End Speech Recognition

    Full text link
    We propose three regularization-based speaker adaptation approaches to adapt the attention-based encoder-decoder (AED) model with very limited adaptation data from target speakers for end-to-end automatic speech recognition. The first method is Kullback-Leibler divergence (KLD) regularization, in which the output distribution of a speaker-dependent (SD) AED is forced to be close to that of the speaker-independent (SI) model by adding a KLD regularization to the adaptation criterion. To compensate for the asymmetric deficiency in KLD regularization, an adversarial speaker adaptation (ASA) method is proposed to regularize the deep-feature distribution of the SD AED through the adversarial learning of an auxiliary discriminator and the SD AED. The third approach is the multi-task learning, in which an SD AED is trained to jointly perform the primary task of predicting a large number of output units and an auxiliary task of predicting a small number of output units to alleviate the target sparsity issue. Evaluated on a Microsoft short message dictation task, all three methods are highly effective in adapting the AED model, achieving up to 12.2% and 3.0% word error rate improvement over an SI AED trained from 3400 hours data for supervised and unsupervised adaptation, respectively.Comment: 5 pages, 3 figures, Interspeech 201
    corecore