53,734 research outputs found

    Deep Learning-based Polar Code Design

    Full text link
    In this work, we introduce a deep learning-based polar code construction algorithm. The core idea is to represent the information/frozen bit indices of a polar code as a binary vector which can be interpreted as trainable weights of a neural network (NN). For this, we demonstrate how this binary vector can be relaxed to a soft-valued vector, facilitating the learning process through gradient descent and enabling an efficient code construction. We further show how different polar code design constraints (e.g., code rate) can be taken into account by means of careful binary-to-soft and soft-to-binary conversions, along with rate-adjustment after each learning iteration. Besides its conceptual simplicity, this approach benefits from having the "decoder-in-the-loop", i.e., the nature of the decoder is inherently taken into consideration while learning (designing) the polar code. We show results for belief propagation (BP) decoding over both AWGN and Rayleigh fading channels with considerable performance gains over state-of-the-art construction schemes.Comment: Allerton201

    Reinforcement Learning for Nested Polar Code Construction

    Full text link
    In this paper, we model nested polar code construction as a Markov decision process (MDP), and tackle it with advanced reinforcement learning (RL) techniques. First, an MDP environment with state, action, and reward is defined in the context of polar coding. Specifically, a state represents the construction of an (N,K)(N,K) polar code, an action specifies its reduction to an (N,K1)(N,K-1) subcode, and reward is the decoding performance. A neural network architecture consisting of both policy and value networks is proposed to generate actions based on the observed states, aiming at maximizing the overall rewards. A loss function is defined to trade off between exploitation and exploration. To further improve learning efficiency and quality, an `integrated learning' paradigm is proposed. It first employs a genetic algorithm to generate a population of (sub-)optimal polar codes for each (N,K)(N,K), and then uses them as prior knowledge to refine the policy in RL. Such a paradigm is shown to accelerate the training process, and converge at better performances. Simulation results show that the proposed learning-based polar constructions achieve comparable, or even better, performances than the state of the art under successive cancellation list (SCL) decoders. Last but not least, this is achieved without exploiting any expert knowledge from polar coding theory in the learning algorithms.Comment: 8 pages, 10 figures, propose a multi-stage genetic algorith

    DeepTurbo: Deep Turbo Decoder

    Full text link
    Present-day communication systems routinely use codes that approach the channel capacity when coupled with a computationally efficient decoder. However, the decoder is typically designed for the Gaussian noise channel and is known to be sub-optimal for non-Gaussian noise distribution. Deep learning methods offer a new approach for designing decoders that can be trained and tailored for arbitrary channel statistics. We focus on Turbo codes and propose DeepTurbo, a novel deep learning based architecture for Turbo decoding. The standard Turbo decoder (Turbo) iteratively applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm with an interleaver in the middle. A neural architecture for Turbo decoding termed (NeuralBCJR), was proposed recently. There, the key idea is to create a module that imitates the BCJR algorithm using supervised learning, and to use the interleaver architecture along with this module, which is then fine-tuned using end-to-end training. However, knowledge of the BCJR algorithm is required to design such an architecture, which also constrains the resulting learned decoder. Here we remedy this requirement and propose a fully end-to-end trained neural decoder - Deep Turbo Decoder (DeepTurbo). With novel learnable decoder structure and training methodology, DeepTurbo reveals superior performance under both AWGN and non-AWGN settings as compared to the other two decoders - Turbo and NeuralBCJR. Furthermore, among all the three, DeepTurbo exhibits the lowest error floor

    LEARN Codes: Inventing Low-latency Codes via Recurrent Neural Networks

    Full text link
    Designing channel codes under low-latency constraints is one of the most demanding requirements in 5G standards. However, a sharp characterization of the performance of traditional codes is available only in the large block-length limit. Guided by such asymptotic analysis, code designs require large block lengths as well as latency to achieve the desired error rate. Tail-biting convolutional codes and other recent state-of-the-art short block codes, while promising reduced latency, are neither robust to channel-mismatch nor adaptive to varying channel conditions. When the codes designed for one channel (e.g.,~Additive White Gaussian Noise (AWGN) channel) are used for another (e.g.,~non-AWGN channels), heuristics are necessary to achieve non-trivial performance. In this paper, we first propose an end-to-end learned neural code, obtained by jointly designing a Recurrent Neural Network (RNN) based encoder and decoder. This code outperforms canonical convolutional code under block settings. We then leverage this experience to propose a new class of codes under low-latency constraints, which we call Low-latency Efficient Adaptive Robust Neural (LEARN) codes. These codes outperform state-of-the-art low-latency codes and exhibit robustness and adaptivity properties. LEARN codes show the potential to design new versatile and universal codes for future communications via tools of modern deep learning coupled with communication engineering insights

    MIST: A Novel Training Strategy for Low-latency Scalable Neural Net Decoders

    Full text link
    In this paper, we propose a low latency, robust and scalable neural net based decoder for convolutional and low-density parity-check (LPDC) coding schemes. The proposed decoders are demonstrated to have bit error rate (BER) and block error rate (BLER) performances at par with the state-of-the-art neural net based decoders while achieving more than 8 times higher decoding speed. The enhanced decoding speed is due to the use of convolutional neural network (CNN) as opposed to recurrent neural network (RNN) used in the best known neural net based decoders. This contradicts existing doctrine that only RNN based decoders can provide a performance close to the optimal ones. The key ingredient to our approach is a novel Mixed-SNR Independent Samples based Training (MIST), which allows for training of CNN with only 1\% of possible datawords, even for block length as high as 1000. The proposed decoder is robust as, once trained, the same decoder can be used for a wide range of SNR values. Finally, in the presence of channel outages, the proposed decoders outperform the best known decoders, {\it viz.} unquantized Viterbi decoder for convolutional code, and belief propagation for LDPC. This gives the CNN decoder a significant advantage in 5G millimeter wave systems, where channel outages are prevalent

    Learning to Flip Successive Cancellation Decoding of Polar Codes with LSTM Networks

    Full text link
    The key to successive cancellation (SC) flip decoding of polar codes is to accurately identify the first error bit. The optimal flipping strategy is considered difficult due to lack of an analytical solution. Alternatively, we propose a deep learning aided SC flip algorithm. Specifically, before each SC decoding attempt, a long short-term memory (LSTM) network is exploited to either (i) locate the first error bit, or (ii) undo a previous `wrong' flip. In each SC attempt, the sequence of log likelihood ratios (LLRs) derived in the previous SC attempt is exploited to decide which action to take. Accordingly, a two-stage training method of the LSTM network is proposed, i.e., learn to locate first error bits in the first stage, and then to undo `wrong' flips in the second stage. Simulation results show that the proposed approach identifies error bits more accurately and achieves better performance than the state-of-the-art SC flip algorithms.Comment: 5 pages, 7 figure

    Low-complexity Recurrent Neural Network-based Polar Decoder with Weight Quantization Mechanism

    Full text link
    Polar codes have drawn much attention and been adopted in 5G New Radio (NR) due to their capacity-achieving performance. Recently, as the emerging deep learning (DL) technique has breakthrough achievements in many fields, neural network decoder was proposed to obtain faster convergence and better performance than belief propagation (BP) decoding. However, neural networks are memory-intensive and hinder the deployment of DL in communication systems. In this work, a low-complexity recurrent neural network (RNN) polar decoder with codebook-based weight quantization is proposed. Our test results show that we can effectively reduce the memory overhead by 98% and alleviate computational complexity with slight performance loss.Comment: 5 pages, accepted by the 2019 International Conference on Acoustics, Speech, and Signal Processing (ICASSP

    Learning from the Syndrome

    Full text link
    In this paper, we introduce the syndrome loss, an alternative loss function for neural error-correcting decoders based on a relaxation of the syndrome. The syndrome loss penalizes the decoder for producing outputs that do not correspond to valid codewords. We show that training with the syndrome loss yields decoders with consistently lower frame error rate for a number of short block codes, at little additional cost during training and no additional cost during inference. The proposed method does not depend on knowledge of the transmitted codeword, making it a promising tool for online adaptation to changing channel conditions.Comment: Accepted to Asilomar 2018 - special session on "Machine Learning for Wireless Systems

    Deep Learning Methods for Improved Decoding of Linear Codes

    Full text link
    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.Comment: Accepted To IEEE Journal Of Selected Topics In Signal Processin

    Neural Belief Propagation Decoding of CRC-Polar Concatenated Codes

    Full text link
    Polar codes are the first class of error correcting codes that provably achieve the channel capacity at infinite code length. They were selected for use in the fifth generation of cellular mobile communications (5G). In practical scenarios such as 5G, a cyclic redundancy check (CRC) is concatenated with polar codes to improve their finite length performance. This is mostly beneficial for sequential successive-cancellation list decoders. However, for parallel iterative belief propagation (BP) decoders, CRC is only used as an early stopping criterion with incremental error-correction performance improvement. In this paper, we first propose a CRC-polar BP (CPBP) decoder by exchanging the extrinsic information between the factor graph of the polar code and that of the CRC. We then propose a neural CPBP (NCPBP) algorithm which improves the CPBP decoder by introducing trainable normalizing weights on the concatenated factor graph. Our results on a 5G polar code of length 128 show that at the frame error rate of 10^(-5) and with a maximum of 30 iterations, the error-correction performance of CPBP and NCPBP are approximately 0.25 dB and 0.5 dB better than that of the conventional CRC-aided BP decoder, respectively, while introducing almost no latency overhead
    corecore