7 research outputs found

    Deep Learning-based Limited Feedback Designs for MIMO Systems

    Full text link
    We study a deep learning (DL) based limited feedback methods for multi-antenna systems. Deep neural networks (DNNs) are introduced to replace an end-to-end limited feedback procedure including pilot-aided channel training process, channel codebook design, and beamforming vector selection. The DNNs are trained to yield binary feedback information as well as an efficient beamforming vector which maximizes the effective channel gain. Compared to conventional limited feedback schemes, the proposed DL method shows an 1 dB symbol error rate (SER) gain with reduced computational complexity.Comment: to appear in IEEE Wireless Commun. Let

    Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance

    Get PDF
    We investigate the performance of multi-user multiple-antenna downlink systems in which a BS serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information, the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and QoS requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a DNN to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance.Comment: accepted to the IEEE Transactions on Wireless Communication

    Knowledge Distillation-aided End-to-End Learning for Linear Precoding in Multiuser MIMO Downlink Systems with Finite-Rate Feedback

    Full text link
    We propose a deep learning-based channel estimation, quantization, feedback, and precoding method for downlink multiuser multiple-input and multiple-output systems. In the proposed system, channel estimation and quantization for limited feedback are handled by a receiver deep neural network (DNN). Precoder selection is handled by a transmitter DNN. To emulate the traditional channel quantization, a binarization layer is adopted at each receiver DNN, and the binarization layer is also used to enable end-to-end learning. However, this can lead to inaccurate gradients, which can trap the receiver DNNs at a poor local minimum during training. To address this, we consider knowledge distillation, in which the existing DNNs are jointly trained with an auxiliary transmitter DNN. The use of an auxiliary DNN as a teacher network allows the receiver DNNs to additionally exploit lossless gradients, which is useful in avoiding a poor local minimum. For the same number of feedback bits, our DNN-based precoding scheme can achieve a higher downlink rate compared to conventional linear precoding with codebook-based limited feedback.Comment: 6 pages, 4 figures, submitted to IEEE Transactions on Vehicular Technolog

    DL-based CSI Feedback and Cooperative Recovery in Massive MIMO

    Full text link
    In this paper, we exploit the correlation between nearby user equipment (UE) and develop a deep learning-based channel state information (CSI) feedback and cooperative recovery framework, CoCsiNet, to reduce the feedback overhead. The CSI information can be divided into two parts: shared by nearby UE and owned by individual UE. The key idea of exploiting the correlation is to reduce the overhead used to repeatedly feedback shared information. Unlike in the general autoencoder framework, an extra decoder and a combination network are added at the base station to recover the shared information from the feedback CSI of two nearby UE and combine the shared and individual information, respectively, but no modification is performed at the UEs. For a UE with multiple antennas, we also introduce a baseline neural network architecture with long short-term memory modules to extract the correlation of nearby antennas. Given that the CSI phase is not sparse, we propose two magnitude-dependent phase feedback strategies that introduce statistical and instant CSI magnitude information to the phase feedback process, respectively. Simulation results on two different channel datasets show the effectiveness of the proposed CoCsiNet.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore