9,818 research outputs found

    Driving maneuver detection using knowledge distillation networks

    Get PDF
    In this thesis, we examine the current state of Advanced Driving Assistance Systems (ADAS) and their relation to maneuver prediction in the literature. We then attempt to solve the problem of variable inter-driver behavior by applying a novel distillation learning system using RoadLab data on tracked driver cephalo-ocular gaze behavior in tandem with high-resolution CANbus data. Current training-based methods in maneuver prediction are potentially subject to underfitting as drivers may exhibit different behavior when preparing to maneuver, but it has been shown that drivers can be grouped into at least two distinct behavior models. We use this information to personalize a deep neural network ensemble by distilling knowledge from a larger teacher network to a smaller student network. We change the networks\u27 input data to a subset of that data during training. Various groupings of driving sequence data are tested for prediction accuracy within this system, particularly against a validation driving sequence belonging to a specific driver group

    Deep Learning-based Driver Behavior Modeling and Analysis

    Get PDF
    Driving safety continues receiving widespread attention from car designers, safety regulators, and automotive research community as driving accidents due to driver distraction or fatigue have increased drastically over the years. In the past decades, there has been a remarkable push towards designing and developing new driver assistance systems with much better recognition and prediction capabilities. Equipped with various sensory systems, these Advanced Driver Assistance Systems (ADAS) are able to accurately perceive information on road conditions, predict traffic situations, estimate driving risks, and provide drivers with imminent warnings and visual assistance. In this thesis, we focus on two main aspects of driver behavior modeling in the design of new generation of ADAS. We first aim at improving the generalization ability of driver distraction recognition systems to diverse driving scenarios using the latest tools of machine learning and connectionist modeling, namely deep learning. To this end, we collect a large dataset of images on various driving situations of drivers from the Internet. Then we introduce Generative Adversarial Networks (GANs) as a data augmentation tool to enhance detection accuracy. A novel driver monitoring system is also introduced. This monitoring system combines multi-information resources, including a driver distraction recognition system, to assess the danger levels of driving situations. Moreover, this thesis proposes a multi-modal system for distraction recognition under various lighting conditions and presents a new Convolutional Neural Network (CNN) architecture, which can operate real-time on a resources-limited computational platform. The new CNN is built upon a novel network bottleneck of Depthwise Separable Convolution layers. The second part of this thesis focuses on driver maneuver prediction, which infers the direction a driver will turn to before a green traffic light is on and predicts accurately whether or not he/she will change the current driving lane. Here, a new method to label driving maneuver records is proposed, by which driving feature sequences for the training of prediction systems are more closely related to their labels. To this end, a new prediction system, which is based on Quasi-Recurrent Neural Networks, is introduced. In addition, and as an application of maneuver prediction, a novel driving proficiency assessment method is proposed. This method exploits the generalization abilities of different maneuver prediction systems to estimate drivers' driving abilities, and it demonstrates several advantages against existing assessment methods. In conjunction with the theoretical contribution, a series of comprehensive experiments are conducted, and the proposed methods are assessed against state-of-the-art works. The analysis of experimental results shows the improvement of results as compared with existing techniques

    Interaction-aware Kalman Neural Networks for Trajectory Prediction

    Full text link
    Forecasting the motion of surrounding obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for intelligent and autonomous vehicles. Complex scenes always yield great challenges in modeling the patterns of surrounding traffic. For example, one main challenge comes from the intractable interaction effects in a complex traffic system. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter network. Attributed to the multiple traffic data sources, our end-to-end trainable approach technically fuses dynamic and interaction-aware trajectories boosting the prediction performance. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for traffic trajectory prediction.Comment: 8 pages, 4 figures, Accepted for IEEE Intelligent Vehicles Symposium (IV) 202
    corecore