27 research outputs found

    Towards a Semantic Perceptual Image Metric

    Full text link
    We present a full reference, perceptual image metric based on VGG-16, an artificial neural network trained on object classification. We fit the metric to a new database based on 140k unique images annotated with ground truth by human raters who received minimal instruction. The resulting metric shows competitive performance on TID 2013, a database widely used to assess image quality assessments methods. More interestingly, it shows strong responses to objects potentially carrying semantic relevance such as faces and text, which we demonstrate using a visualization technique and ablation experiments. In effect, the metric appears to model a higher influence of semantic context on judgments, which we observe particularly in untrained raters. As the vast majority of users of image processing systems are unfamiliar with Image Quality Assessment (IQA) tasks, these findings may have significant impact on real-world applications of perceptual metrics

    Bridge the Gap Between VQA and Human Behavior on Omnidirectional Video: A Large-Scale Dataset and a Deep Learning Model

    Full text link
    Omnidirectional video enables spherical stimuli with the 360×180∘360 \times 180^ \circ viewing range. Meanwhile, only the viewport region of omnidirectional video can be seen by the observer through head movement (HM), and an even smaller region within the viewport can be clearly perceived through eye movement (EM). Thus, the subjective quality of omnidirectional video may be correlated with HM and EM of human behavior. To fill in the gap between subjective quality and human behavior, this paper proposes a large-scale visual quality assessment (VQA) dataset of omnidirectional video, called VQA-OV, which collects 60 reference sequences and 540 impaired sequences. Our VQA-OV dataset provides not only the subjective quality scores of sequences but also the HM and EM data of subjects. By mining our dataset, we find that the subjective quality of omnidirectional video is indeed related to HM and EM. Hence, we develop a deep learning model, which embeds HM and EM, for objective VQA on omnidirectional video. Experimental results show that our model significantly improves the state-of-the-art performance of VQA on omnidirectional video.Comment: Accepted by ACM MM 201

    The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

    Full text link
    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.Comment: Accepted to CVPR 2018; Code and data available at https://www.github.com/richzhang/PerceptualSimilarit

    Explainable Image Quality Assessments in Teledermatological Photography

    Full text link
    Image quality is a crucial factor in the effectiveness and efficiency of teledermatological consultations. However, up to 50% of images sent by patients have quality issues, thus increasing the time to diagnosis and treatment. An automated, easily deployable, explainable method for assessing image quality is necessary to improve the current teledermatological consultation flow. We introduce ImageQX, a convolutional neural network for image quality assessment with a learning mechanism for identifying the most common poor image quality explanations: bad framing, bad lighting, blur, low resolution, and distance issues. ImageQX was trained on 26,635 photographs and validated on 9,874 photographs, each annotated with image quality labels and poor image quality explanations by up to 12 board-certified dermatologists. The photographic images were taken between 2017 and 2019 using a mobile skin disease tracking application accessible worldwide. Our method achieves expert-level performance for both image quality assessment and poor image quality explanation. For image quality assessment, ImageQX obtains a macro F1-score of 0.73 +- 0.01, which places it within standard deviation of the pairwise inter-rater F1-score of 0.77 +- 0.07. For poor image quality explanations, our method obtains F1-scores of between 0.37 +- 0.01 and 0.70 +- 0.01, similar to the inter-rater pairwise F1-score of between 0.24 +- 0.15 and 0.83 +- 0.06. Moreover, with a size of only 15 MB, ImageQX is easily deployable on mobile devices. With an image quality detection performance similar to that of dermatologists, incorporating ImageQX into the teledermatology flow can enable a better, faster flow for remote consultations.Comment: Accepted at the Telemedicine and eHealth Journa
    corecore