77,098 research outputs found

    Learning to Rank Question Answer Pairs with Holographic Dual LSTM Architecture

    Full text link
    We describe a new deep learning architecture for learning to rank question answer pairs. Our approach extends the long short-term memory (LSTM) network with holographic composition to model the relationship between question and answer representations. As opposed to the neural tensor layer that has been adopted recently, the holographic composition provides the benefits of scalable and rich representational learning approach without incurring huge parameter costs. Overall, we present Holographic Dual LSTM (HD-LSTM), a unified architecture for both deep sentence modeling and semantic matching. Essentially, our model is trained end-to-end whereby the parameters of the LSTM are optimized in a way that best explains the correlation between question and answer representations. In addition, our proposed deep learning architecture requires no extensive feature engineering. Via extensive experiments, we show that HD-LSTM outperforms many other neural architectures on two popular benchmark QA datasets. Empirical studies confirm the effectiveness of holographic composition over the neural tensor layer.Comment: SIGIR 2017 Full Pape

    Multilingual Models for Compositional Distributed Semantics

    Full text link
    We present a novel technique for learning semantic representations, which extends the distributional hypothesis to multilingual data and joint-space embeddings. Our models leverage parallel data and learn to strongly align the embeddings of semantically equivalent sentences, while maintaining sufficient distance between those of dissimilar sentences. The models do not rely on word alignments or any syntactic information and are successfully applied to a number of diverse languages. We extend our approach to learn semantic representations at the document level, too. We evaluate these models on two cross-lingual document classification tasks, outperforming the prior state of the art. Through qualitative analysis and the study of pivoting effects we demonstrate that our representations are semantically plausible and can capture semantic relationships across languages without parallel data.Comment: Proceedings of ACL 2014 (Long papers

    Syntax-Aware Multi-Sense Word Embeddings for Deep Compositional Models of Meaning

    Full text link
    Deep compositional models of meaning acting on distributional representations of words in order to produce vectors of larger text constituents are evolving to a popular area of NLP research. We detail a compositional distributional framework based on a rich form of word embeddings that aims at facilitating the interactions between words in the context of a sentence. Embeddings and composition layers are jointly learned against a generic objective that enhances the vectors with syntactic information from the surrounding context. Furthermore, each word is associated with a number of senses, the most plausible of which is selected dynamically during the composition process. We evaluate the produced vectors qualitatively and quantitatively with positive results. At the sentence level, the effectiveness of the framework is demonstrated on the MSRPar task, for which we report results within the state-of-the-art range.Comment: Accepted for presentation at EMNLP 201
    • …
    corecore