36,980 research outputs found

    Learning Autonomy in Management of Wireless Random Networks

    Full text link
    This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes. Individual nodes decide their optimal states with distributed coordination among other nodes through randomly varying backhaul links. This poses a technical challenge in distributed universal optimization policy robust to a random topology of the wireless network, which has not been properly addressed by conventional deep neural networks (DNNs) with rigid structural configurations. We develop a flexible DNN formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology. A key enabler of this approach is an iterative message-sharing strategy through arbitrarily connected backhaul links. The DMPNN provides a convergent solution for iterative coordination by learning numerous random backhaul interactions. The DMPNN is investigated for various configurations of the power control in wireless networks, and intensive numerical results prove its universality and viability over conventional optimization and DNN approaches.Comment: to appear in IEEE TW

    Defeating Proactive Jammers Using Deep Reinforcement Learning for Resource-Constrained IoT Networks

    Full text link
    Traditional anti-jamming techniques like spread spectrum, adaptive power/rate control, and cognitive radio, have demonstrated effectiveness in mitigating jamming attacks. However, their robustness against the growing complexity of internet-of-thing (IoT) networks and diverse jamming attacks is still limited. To address these challenges, machine learning (ML)-based techniques have emerged as promising solutions. By offering adaptive and intelligent anti-jamming capabilities, ML-based approaches can effectively adapt to dynamic attack scenarios and overcome the limitations of traditional methods. In this paper, we propose a deep reinforcement learning (DRL)-based approach that utilizes state input from realistic wireless network interface cards. We train five different variants of deep Q-network (DQN) agents to mitigate the effects of jamming with the aim of identifying the most sample-efficient, lightweight, robust, and least complex agent that is tailored for power-constrained devices. The simulation results demonstrate the effectiveness of the proposed DRL-based anti-jamming approach against proactive jammers, regardless of their jamming strategy which eliminates the need for a pattern recognition or jamming strategy detection step. Our findings present a promising solution for securing IoT networks against jamming attacks and highlights substantial opportunities for continued investigation and advancement within this field

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented
    corecore