6,609 research outputs found

    Improving medium-range ensemble weather forecasts with hierarchical ensemble transformers

    Full text link
    Statistical post-processing of global ensemble weather forecasts is revisited by leveraging recent developments in machine learning. Verification of past forecasts is exploited to learn systematic deficiencies of numerical weather predictions in order to boost post-processed forecast performance. Here, we introduce PoET, a post-processing approach based on hierarchical transformers. PoET has 2 major characteristics: 1) the post-processing is applied directly to the ensemble members rather than to a predictive distribution or a functional of it, and 2) the method is ensemble-size agnostic in the sense that the number of ensemble members in training and inference mode can differ. The PoET output is a set of calibrated members that has the same size as the original ensemble but with improved reliability. Performance assessments show that PoET can bring up to 20% improvement in skill globally for 2m temperature and 2% for precipitation forecasts and outperforms the simpler statistical member-by-member method, used here as a competitive benchmark. PoET is also applied to the ENS10 benchmark dataset for ensemble post-processing and provides better results when compared to other deep learning solutions that are evaluated for most parameters. Furthermore, because each ensemble member is calibrated separately, downstream applications should directly benefit from the improvement made on the ensemble forecast with post-processing

    Precipitation nowcasting with generative diffusion models

    Full text link
    In recent years traditional numerical methods for accurate weather prediction have been increasingly challenged by deep learning methods. Numerous historical datasets used for short and medium-range weather forecasts are typically organized into a regular spatial grid structure. This arrangement closely resembles images: each weather variable can be visualized as a map or, when considering the temporal axis, as a video. Several classes of generative models, comprising Generative Adversarial Networks, Variational Autoencoders, or the recent Denoising Diffusion Models have largely proved their applicability to the next-frame prediction problem, and is thus natural to test their performance on the weather prediction benchmarks. Diffusion models are particularly appealing in this context, due to the intrinsically probabilistic nature of weather forecasting: what we are really interested to model is the probability distribution of weather indicators, whose expected value is the most likely prediction. In our study, we focus on a specific subset of the ERA-5 dataset, which includes hourly data pertaining to Central Europe from the years 2016 to 2021. Within this context, we examine the efficacy of diffusion models in handling the task of precipitation nowcasting. Our work is conducted in comparison to the performance of well-established U-Net models, as documented in the existing literature. Our proposed approach of Generative Ensemble Diffusion (GED) utilizes a diffusion model to generate a set of possible weather scenarios which are then amalgamated into a probable prediction via the use of a post-processing network. This approach, in comparison to recent deep learning models, substantially outperformed them in terms of overall performance.Comment: 21 pages, 6 figure

    Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model

    Full text link
    An ensemble post-processing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to post-process convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1--24 hr forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier Skill Score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the inter-variable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to post-process CAM output using neural networks that can be applied to severe weather prediction

    Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction

    Full text link
    Dynamical weather and climate prediction models underpin many studies of the Earth system and hold the promise of being able to make robust projections of future climate change based on physical laws. However, simulations from these models still show many differences compared with observations. Machine learning has been applied to solve certain prediction problems with great success, and recently it's been proposed that this could replace the role of physically-derived dynamical weather and climate models to give better quality simulations. Here, instead, a framework using machine learning together with physically-derived models is tested, in which it is learnt how to correct the errors of the latter from timestep to timestep. This maintains the physical understanding built into the models, whilst allowing performance improvements, and also requires much simpler algorithms and less training data. This is tested in the context of simulating the chaotic Lorenz '96 system, and it is shown that the approach yields models that are stable and that give both improved skill in initialised predictions and better long-term climate statistics. Improvements in long-term statistics are smaller than for single time-step tendencies, however, indicating that it would be valuable to develop methods that target improvements on longer time scales. Future strategies for the development of this approach and possible applications to making progress on important scientific problems are discussed.Comment: 26p, 7 figures To be published in Journal of Advances in Modeling Earth System
    • …
    corecore