139,735 research outputs found

    Deep Joint Entity Disambiguation with Local Neural Attention

    Full text link
    We propose a novel deep learning model for joint document-level entity disambiguation, which leverages learned neural representations. Key components are entity embeddings, a neural attention mechanism over local context windows, and a differentiable joint inference stage for disambiguation. Our approach thereby combines benefits of deep learning with more traditional approaches such as graphical models and probabilistic mention-entity maps. Extensive experiments show that we are able to obtain competitive or state-of-the-art accuracy at moderate computational costs.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP) 2017 long pape

    Improving Retrieval-Based Question Answering with Deep Inference Models

    Full text link
    Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.Comment: 8 pages, 2 figures, 8 tables, accepted at IJCNN 201

    Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Inference

    Full text link
    Deep learning models have achieved remarkable success in natural language inference (NLI) tasks. While these models are widely explored, they are hard to interpret and it is often unclear how and why they actually work. In this paper, we take a step toward explaining such deep learning based models through a case study on a popular neural model for NLI. In particular, we propose to interpret the intermediate layers of NLI models by visualizing the saliency of attention and LSTM gating signals. We present several examples for which our methods are able to reveal interesting insights and identify the critical information contributing to the model decisions.Comment: 11 pages, 11 figures, accepted as a short paper at EMNLP 201

    Depth estimation from monocular images

    Get PDF
    This work will focus on studying different deep learning architectures for obtaining depth information from monocular RGB images.During this project, state-of-the-art deep learning models have been used to estimate depth maps from a monocular RGB image applying a teacher-student learning approach. This paradigm has been used in order to distillate the knowledge of high capacity deep neural networks into shallower ones to make inference faster for real-time applications. Some successful applications of this technique can be found both at natural language and computer vision applications
    • …
    corecore