4,731 research outputs found

    Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

    Get PDF
    In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are boosted by combining them with the motion detection scores, in proportion to their respective spatial overlap. In stage 3, sequences of detection boxes most likely to be associated with a single action instance, called action tubes, are constructed by solving two energy maximisation problems via dynamic programming. While in the first pass, action paths spanning the whole video are built by linking detection boxes over time using their class-specific scores and their spatial overlap, in the second pass, temporal trimming is performed by ensuring label consistency for all constituting detection boxes. We demonstrate the performance of our algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new state-of-the-art results across the board and significantly increasing detection speed at test time. We achieve a huge leap forward in action detection performance and report a 20% and 11% gain in mAP (mean average precision) on UCF-101 and J-HMDB-21 datasets respectively when compared to the state-of-the-art.Comment: Accepted by British Machine Vision Conference 201

    Deep learning for detecting multiple space-time action tubes in videos

    Get PDF
    In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are boosted by combining them with the motion detection scores, in proportion to their respective spatial overlap. In stage 3, sequences of detection boxes most likely to be associated with a single action instance, called action tubes, are constructed by solving two energy maximisation problems via dynamic programming. While in the first pass, action paths spanning the whole video are built by linking detection boxes over time using their class-specific scores and their spatial overlap, in the second pass, temporal trimming is performed by ensuring label consistency for all constituting detection boxes. We demonstrate the performance of our algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new state-of-the-art results across the board and significantly increasing detection speed at test time

    Generic Tubelet Proposals for Action Localization

    Full text link
    We develop a novel framework for action localization in videos. We propose the Tube Proposal Network (TPN), which can generate generic, class-independent, video-level tubelet proposals in videos. The generated tubelet proposals can be utilized in various video analysis tasks, including recognizing and localizing actions in videos. In particular, we integrate these generic tubelet proposals into a unified temporal deep network for action classification. Compared with other methods, our generic tubelet proposal method is accurate, general, and is fully differentiable under a smoothL1 loss function. We demonstrate the performance of our algorithm on the standard UCF-Sports, J-HMDB21, and UCF-101 datasets. Our class-independent TPN outperforms other tubelet generation methods, and our unified temporal deep network achieves state-of-the-art localization results on all three datasets

    Learning activity progression in LSTMs for activity detection and early detection

    Full text link
    In this work we improve training of temporal deep models to better learn activity progression for activity detection and early detection tasks. Conventionally, when training a Recurrent Neural Network, specifically a Long Short Term Memory (LSTM) model, the training loss only considers classification error. However, we argue that the detection score of the correct activity category, or the detection score margin between the correct and incorrect categories, should be monotonically non-decreasing as the model observes more of the activity. We design novel ranking losses that directly penalize the model on violation of such monotonicities, which are used together with classification loss in training of LSTM models. Evaluation on ActivityNet shows significant benefits of the proposed ranking losses in both activity detection and early detection tasks.https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Ma_Learning_Activity_Progression_CVPR_2016_paper.htmlPublished versio

    Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions

    Get PDF
    We aim for zero-shot localization and classification of human actions in video. Where traditional approaches rely on global attribute or object classification scores for their zero-shot knowledge transfer, our main contribution is a spatial-aware object embedding. To arrive at spatial awareness, we build our embedding on top of freely available actor and object detectors. Relevance of objects is determined in a word embedding space and further enforced with estimated spatial preferences. Besides local object awareness, we also embed global object awareness into our embedding to maximize actor and object interaction. Finally, we exploit the object positions and sizes in the spatial-aware embedding to demonstrate a new spatio-temporal action retrieval scenario with composite queries. Action localization and classification experiments on four contemporary action video datasets support our proposal. Apart from state-of-the-art results in the zero-shot localization and classification settings, our spatial-aware embedding is even competitive with recent supervised action localization alternatives.Comment: ICC

    Am I Done? Predicting Action Progress in Videos

    Get PDF
    In this paper we deal with the problem of predicting action progress in videos. We argue that this is an extremely important task since it can be valuable for a wide range of interaction applications. To this end we introduce a novel approach, named ProgressNet, capable of predicting when an action takes place in a video, where it is located within the frames, and how far it has progressed during its execution. To provide a general definition of action progress, we ground our work in the linguistics literature, borrowing terms and concepts to understand which actions can be the subject of progress estimation. As a result, we define a categorization of actions and their phases. Motivated by the recent success obtained from the interaction of Convolutional and Recurrent Neural Networks, our model is based on a combination of the Faster R-CNN framework, to make frame-wise predictions, and LSTM networks, to estimate action progress through time. After introducing two evaluation protocols for the task at hand, we demonstrate the capability of our model to effectively predict action progress on the UCF-101 and J-HMDB datasets
    • …
    corecore