612,699 research outputs found
Deep Regionlets for Object Detection
In this paper, we propose a novel object detection framework named "Deep
Regionlets" by establishing a bridge between deep neural networks and
conventional detection schema for accurate generic object detection. Motivated
by the abilities of regionlets for modeling object deformation and multiple
aspect ratios, we incorporate regionlets into an end-to-end trainable deep
learning framework. The deep regionlets framework consists of a region
selection network and a deep regionlet learning module. Specifically, given a
detection bounding box proposal, the region selection network provides guidance
on where to select regions to learn the features from. The regionlet learning
module focuses on local feature selection and transformation to alleviate local
variations. To this end, we first realize non-rectangular region selection
within the detection framework to accommodate variations in object appearance.
Moreover, we design a "gating network" within the regionlet leaning module to
enable soft regionlet selection and pooling. The Deep Regionlets framework is
trained end-to-end without additional efforts. We perform ablation studies and
conduct extensive experiments on the PASCAL VOC and Microsoft COCO datasets.
The proposed framework outperforms state-of-the-art algorithms, such as
RetinaNet and Mask R-CNN, even without additional segmentation labels.Comment: Accepted to ECCV 201
An investigation of a deep learning based malware detection system
We investigate a Deep Learning based system for malware detection. In the
investigation, we experiment with different combination of Deep Learning
architectures including Auto-Encoders, and Deep Neural Networks with varying
layers over Malicia malware dataset on which earlier studies have obtained an
accuracy of (98%) with an acceptable False Positive Rates (1.07%). But these
results were done using extensive man-made custom domain features and investing
corresponding feature engineering and design efforts. In our proposed approach,
besides improving the previous best results (99.21% accuracy and a False
Positive Rate of 0.19%) indicates that Deep Learning based systems could
deliver an effective defense against malware. Since it is good in automatically
extracting higher conceptual features from the data, Deep Learning based
systems could provide an effective, general and scalable mechanism for
detection of existing and unknown malware.Comment: 13 Pages, 4 figure
Italian Event Detection Goes Deep Learning
This paper reports on a set of experiments with different word embeddings to
initialize a state-of-the-art Bi-LSTM-CRF network for event detection and
classification in Italian, following the EVENTI evaluation exercise. The net-
work obtains a new state-of-the-art result by improving the F1 score for
detection of 1.3 points, and of 6.5 points for classification, by using a
single step approach. The results also provide further evidence that embeddings
have a major impact on the performance of such architectures.Comment: to appear at CLiC-it 201
- …
