1,780 research outputs found

    Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-graining

    Full text link
    General circulation models (GCMs) typically have a grid size of 25--200 km. Parametrizations are used to represent diabatic processes such as radiative transfer and cloud microphysics and account for sub-grid-scale motions and variability. Unlike traditional approaches, neural networks (NNs) can readily exploit recent observational datasets and global cloud-system resolving model (CRM) simulations to learn subgrid variability. This article describes an NN parametrization trained by coarse-graining a near-global CRM simulation with a 4~km horizontal grid spacing. The NN predicts the residual heating and moistening averaged over (160 km)^2 grid boxes as a function of the coarse-resolution fields within the same atmospheric column. This NN is coupled to the dynamical core of a GCM with the same 160 km resolution. A recent study described how to train such an NN to be numerically stable when coupled to specified time-evolving advective forcings in a single column model, but feedbacks between NN and GCM components cause spatially-extended simulations to crash within a few days. Analyzing the linearized response of such an NN reveals that it learns to exploit a strong synchrony between precipitation and the atmospheric state above 10 km. Removing these variables from the NN's inputs stabilizes the coupled simulations, which predict the future state more accurately than a coarse-resolution simulation without any parametrizations of sub-grid-scale variability, although the mean state slowly drifts

    Atmospheric boundary layer dynamics from balloon soundings worldwide : CLASS4GL v1.0

    Get PDF
    The coupling between soil, vegetation and atmosphere is thought to be crucial in the development and intensification of weather extremes, especially meteorological droughts, heat waves and severe storms. Therefore, understanding the evolution of the atmospheric boundary layer (ABL) and the role of land-atmosphere feedbacks is necessary for earlier warnings, better climate projection and timely societal adaptation. However, this understanding is hampered by the difficulties of attributing cause-effect relationships from complex coupled models and the irregular space-time distribution of in situ observations of the land-atmosphere system. As such, there is a need for simple deterministic appraisals that systematically discriminate land-atmosphere interactions from observed weather phenomena over large domains and climatological time spans. Here, we present a new interactive data platform to study the behavior of the ABL and land-atmosphere interactions based on worldwide weather balloon soundings and an ABL model. This software tool - referred to as CLASS4GL (http://class4gl.eu, last access: 27 May 2018) - is developed with the objectives of (a) mining appropriate global observational data from similar to 15 million weather balloon soundings since 1981 and combining them with satellite and reanalysis data and (b) constraining and initializing a numerical model of the daytime evolution of the ABL that serves as a tool to interpret these observations mechanistically and deterministically. As a result, it fully automizes extensive global model experiments to assess the effects of land and atmospheric conditions on the ABL evolution as observed in different climate regions around the world. The suitability of the set of observations, model formulations and global parameters employed by CLASS4GL is extensively validated. In most cases, the framework is able to realistically reproduce the observed daytime response of the mixed-layer height, potential temperature and specific humidity from the balloon soundings. In this extensive global validation exercise, a bias of 10.1 mh(-1), -0.036 Kh(-1) and 0.06 g kg(-1) h(-1) is found for the morning-to-afternoon evolution of the mixed-layer height, potential temperature and specific humidity. The virtual tool is in continuous development and aims to foster a better process understanding of the drivers of the ABL evolution and their global distribution, particularly during the onset and amplification of weather extremes. Finally, it can also be used to scrutinize the representation of land-atmosphere feedbacks and ABL dynamics in Earth system models, numerical weather prediction models, atmospheric reanalysis and satellite retrievals, with the ultimate goal of improving local climate projections, providing earlier warning of extreme weather and fostering a more effective development of climate adaptation strategies. The tool can be easily down-loaded via http://class4gl.eu (last access: 27 May 2018) and is open source

    Mapping Europe into local climate zones

    Get PDF
    Cities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Constraining Climate Model Parameters from Observed 20th Century Changes

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change observations from the 20th century. First, we compare observed changes in surface, upper-air, and deep-ocean temperature changes against simulations of 20th century climate in which the climate model parameters were systematically varied. The estimated 90% range of climate sensitivity is 2.0 to 5.0 K. The net aerosol forcing strength for the 1980s has 90% bounds of -0.70 to -0.27 W/m2. The rate of deep-ocean heat uptake corresponds to an effective diffusivity, Kv, with a 90% range of 0.04 to 4.1 cm2/s. Second, we estimate the effective climate sensitivity and rate of deep-ocean heat uptake for 11 of the IPCC AR4 AOGCMs. By comparing against the acceptable combinations inferred by the observations, we conclude that the rate of deep-ocean heat uptake for the majority of AOGCMs lie above the observationally based median value. This implies a bias in the predictions inferred from the IPCC models alone. This bias can be seen in the range of transient climate response from the AOGCMs as compared to that from the observational constraints.This work was supported in part by the Office of Science (BER), U.S. Dept. of Energy Grant No. DE-FG02-93ER61677, NSF, and by the MIT Joint Program on the Science and Policy of Global Change

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore