3 research outputs found

    Rate Forecaster based Energy Aware Band Assignment in Multiband Networks

    Full text link
    The high frequency communication bands (mmWave and sub-THz) promise tremendous data rates, however, they also have very high power consumption which is particularly significant for battery-power-limited user-equipment (UE). In this context, we design an energy aware band assignment system which reduces the power consumption while also achieving a target sum rate of M in T time-slots. We do this by using 1) Rate forecaster(s); 2) Channel forecaster(s) which forecasts T direct multistep ahead using a stacked (long short term memory) LSTM architecture. We propose an iterative rate updating algorithm which updates the target rate based on current rate and future predicted rates in a frame. The proposed approach is validated on the publicly available `DeepMIMO' dataset. Research findings shows that the rate forecaster based approach performs better than the channel forecaster. Furthermore, LSTM based predictions outperforms well celebrated Transformer predictions in terms of NRMSE and NMAE. Research findings reveals that the power consumption with this approach is ~ 300 mW lower compared to a greedy band assignment at a 1.5Gb/s target rate
    corecore