5,650 research outputs found

    Deep residual learning in CT physics: scatter correction for spectral CT

    Full text link
    Recently, spectral CT has been drawing a lot of attention in a variety of clinical applications primarily due to its capability of providing quantitative information about material properties. The quantitative integrity of the reconstructed data depends on the accuracy of the data corrections applied to the measurements. Scatter correction is a particularly sensitive correction in spectral CT as it depends on system effects as well as the object being imaged and any residual scatter is amplified during the non-linear material decomposition. An accurate way of removing scatter is subtracting the scatter estimated by Monte Carlo simulation. However, to get sufficiently good scatter estimates, extremely large numbers of photons is required, which may lead to unexpectedly high computational costs. Other approaches model scatter as a convolution operation using kernels derived using empirical methods. These techniques have been found to be insufficient in spectral CT due to their inability to sufficiently capture object dependence. In this work, we develop a deep residual learning framework to address both issues of computation simplicity and object dependency. A deep convolution neural network is trained to determine the scatter distribution from the projection content in training sets. In test cases of a digital anthropomorphic phantom and real water phantom, we demonstrate that with much lower computing costs, the proposed network provides sufficiently accurate scatter estimation

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin
    • …
    corecore