4 research outputs found

    Optimization and Analysis of Wireless Networks Lifetime using Soft Computing for Industrial Applications

    Get PDF
    Recently, wireless networks are applied in various engineering and industrial applications. One of the critical problems in wireless network system optimization in intelligent applications is obtaining an adequate energy fairness level. This issue can be resolved by applying effective cluster-based routing optimization with multi-hop routing. Hence a new network structure is developed that is derived from energy consumption architecture by applying soft computing strategies such as evolutionary operators in determining the exact clusters for optimizing energy consumption. The new effective evolutionary operators are tested in the optimization of a lifetime. The proposed method is simulated for different values of the routing factor, α, for different types of networks. The energy levels range from 0.4 to 0.8, achieving good results for nearly 2500 rounds. The proposed strategy optimizes the clusters, and its head is selected reliably. The optimization of cluster head choice has been done based on the base station distance, the energy of the node, and the node's energy efficiency. The reliability of the long-distance nodes is increased during the data transmission by modifying the size of the area of the candidate set of nodes in contrast the near-distance node's energy consumption is reduced. For the energy levels that range from 0.4 to 0.8, the higher network throughput is obtained at the same time network lifetime is optimized compared to other well-known approaches. The proposed model is expected for different industrial wireless network applications to optimize the systems during the long-run simulation and to achieve high reliability and sustainability

    Deep Learning for Distributed Optimization: Applications to Wireless Resource Management

    Full text link
    This paper studies a deep learning (DL) framework to solve distributed non-convex constrained optimizations in wireless networks where multiple computing nodes, interconnected via backhaul links, desire to determine an efficient assignment of their states based on local observations. Two different configurations are considered: First, an infinite-capacity backhaul enables nodes to communicate in a lossless way, thereby obtaining the solution by centralized computations. Second, a practical finite-capacity backhaul leads to the deployment of distributed solvers equipped along with quantizers for communication through capacity-limited backhaul. The distributed nature and the nonconvexity of the optimizations render the identification of the solution unwieldy. To handle them, deep neural networks (DNNs) are introduced to approximate an unknown computation for the solution accurately. In consequence, the original problems are transformed to training tasks of the DNNs subject to non-convex constraints where existing DL libraries fail to extend straightforwardly. A constrained training strategy is developed based on the primal-dual method. For distributed implementation, a novel binarization technique at the output layer is developed for quantization at each node. Our proposed distributed DL framework is examined in various network configurations of wireless resource management. Numerical results verify the effectiveness of our proposed approach over existing optimization techniques.Comment: to appear in IEEE J. Sel. Areas Commu

    Deep Learning Based Transmit Power Control in Underlaid Device-to-Device Communication

    No full text
    corecore