15,693 research outputs found

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Deep learning in clinical natural language processing: a methodical review.

    Get PDF
    OBJECTIVE: This article methodically reviews the literature on deep learning (DL) for natural language processing (NLP) in the clinical domain, providing quantitative analysis to answer 3 research questions concerning methods, scope, and context of current research. MATERIALS AND METHODS: We searched MEDLINE, EMBASE, Scopus, the Association for Computing Machinery Digital Library, and the Association for Computational Linguistics Anthology for articles using DL-based approaches to NLP problems in electronic health records. After screening 1,737 articles, we collected data on 25 variables across 212 papers. RESULTS: DL in clinical NLP publications more than doubled each year, through 2018. Recurrent neural networks (60.8%) and word2vec embeddings (74.1%) were the most popular methods; the information extraction tasks of text classification, named entity recognition, and relation extraction were dominant (89.2%). However, there was a long tail of other methods and specific tasks. Most contributions were methodological variants or applications, but 20.8% were new methods of some kind. The earliest adopters were in the NLP community, but the medical informatics community was the most prolific. DISCUSSION: Our analysis shows growing acceptance of deep learning as a baseline for NLP research, and of DL-based NLP in the medical community. A number of common associations were substantiated (eg, the preference of recurrent neural networks for sequence-labeling named entity recognition), while others were surprisingly nuanced (eg, the scarcity of French language clinical NLP with deep learning). CONCLUSION: Deep learning has not yet fully penetrated clinical NLP and is growing rapidly. This review highlighted both the popular and unique trends in this active field
    • …
    corecore