2 research outputs found

    Caching as an Image Characterization Problem using Deep Convolutional Neural Networks

    Full text link
    Caching of popular content closer to the mobile user can significantly increase overall user experience as well as network efficiency by decongesting backbone network segments in the case of congestion episodes. In order to find the optimal caching locations, many conventional approaches rely on solving a complex optimization problem that suffers from the curse of dimensionality, which may fail to support online decision making. In this paper we propose a framework to amalgamate model based optimization with data driven techniques by transforming an optimization problem to a grayscale image and train a convolutional neural network (CNN) to predict optimal caching location policies. The rationale for the proposed modelling comes from CNN's superiority to capture features in grayscale images reaching human level performance in image recognition problems. The CNN is trained with optimal solutions and numerical investigations reveal that the performance can increase by more than 400% compared to powerful randomized greedy algorithms. To this end, the proposed technique seems as a promising way forward to the holy grail aspect in resource orchestration which is providing high quality decision making in real time.Comment: 7 pages, 5 figure

    A Survey of Deep Learning for Data Caching in Edge Network

    Full text link
    The concept of edge caching provision in emerging 5G and beyond mobile networks is a promising method to deal both with the traffic congestion problem in the core network as well as reducing latency to access popular content. In that respect end user demand for popular content can be satisfied by proactively caching it at the network edge, i.e, at close proximity to the users. In addition to model based caching schemes learning-based edge caching optimizations has recently attracted significant attention and the aim hereafter is to capture these recent advances for both model based and data driven techniques in the area of proactive caching. This paper summarizes the utilization of deep learning for data caching in edge network. We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure. Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning. Furthermore, a comparison of state-of-the-art literature is provided from the aspects of caching topics and deep learning methods. Finally, we discuss research challenges and future directions of applying deep learning for cachin
    corecore