144 research outputs found

    HyperRNN: Deep Learning-Aided Downlink CSI Acquisition via Partial Channel Reciprocity for FDD Massive MIMO

    Full text link
    In order to unlock the full advantages of massive multiple input multiple output (MIMO) in the downlink, channel state information (CSI) is required at the base station (BS) to optimize the beamforming matrices. In frequency division duplex (FDD) systems, full channel reciprocity does not hold, and CSI acquisition generally requires downlink pilot transmission followed by uplink feedback. Prior work proposed the end-to-end design of pilot transmission, feedback, and CSI estimation via deep learning. In this work, we introduce an enhanced end-to-end design that leverages partial uplink-downlink reciprocity and temporal correlation of the fading processes by utilizing jointly downlink and uplink pilots. The proposed method is based on a novel deep learning architecture -- HyperRNN -- that combines hypernetworks and recurrent neural networks (RNNs) to optimize the transfer of long-term channel features from uplink to downlink. Simulation results demonstrate that the HyperRNN achieves a lower normalized mean square error (NMSE) performance, and that it reduces requirements in terms of pilot lengths.Comment: To be presented at SPAWC 202

    Joint Port Selection Based Channel Acquisition for FDD Cell-Free Massive MIMO

    Full text link
    In frequency division duplexing (FDD) cell-free massive MIMO, the acquisition of the channel state information (CSI) is very challenging because of the large overhead required for the training and feedback of the downlink channels of multiple cooperating base stations (BSs). In this paper, for systems with partial uplink-downlink channel reciprocity, and a general spatial domain channel model with variations in the average port power and correlation among port coefficients, we propose a joint-port-selection-based CSI acquisition and feedback scheme for the downlink transmission with zero-forcing precoding. The scheme uses an eigenvalue-decomposition-based transformation to reduce the feedback overhead by exploring the port correlation. We derive the sum-rate of the system for any port selection. Based on the sum-rate result, we propose a low-complexity greedy-search-based joint port selection (GS-JPS) algorithm. Moreover, to adapt to fast time-varying scenarios, a supervised deep learning-enhanced joint port selection (DL-JPS) algorithm is proposed. Simulations verify the effectiveness of our proposed schemes and their advantage over existing port-selection channel acquisition schemes.Comment: 30 pages, 9 figures. The paper has been submitted to IEEE journal for possible publicatio

    Downlink Extrapolation for FDD Multiple Antenna Systems Through Neural Network Using Extracted Uplink Path Gains

    Full text link
    When base stations (BSs) are deployed with multiple antennas, they need to have downlink (DL) channel state information (CSI) to optimize downlink transmissions by beamforming. The DL CSI is usually measured at mobile stations (MSs) through DL training and fed back to the BS in frequency division duplexing (FDD). The DL training and uplink (UL) feedback might become infeasible due to insufficient coherence time interval when the channel rapidly changes due to high speed of MSs. Without the feedback from MSs, it may be possible for the BS to directly obtain the DL CSI using the inherent relation of UL and DL channels even in FDD, which is called DL extrapolation. Although the exact relation would be highly nonlinear, previous studies have shown that a neural network (NN) can be used to estimate the DL CSI from the UL CSI at the BS. Most of previous works on this line of research trained the NN using full dimensional UL and DL channels; however, the NN training complexity becomes severe as the number of antennas at the BS increases. To reduce the training complexity and improve DL CSI estimation quality, this paper proposes a novel DL extrapolation technique using simplified input and output of the NN. It is shown through many measurement campaigns that the UL and DL channels still share common components like path delays and angles in FDD. The proposed technique first extracts these common coefficients from the UL and DL channels and trains the NN only using the path gains, which depend on frequency bands, with reduced dimension compared to the full UL and DL channels. Extensive simulation results show that the proposed technique outperforms the conventional approach, which relies on the full UL and DL channels to train the NN, regardless of the speed of MSs.Comment: accepted for IEEE Acces
    • …
    corecore