241 research outputs found

    Enhancing Deep Knowledge Tracing with Auxiliary Tasks

    Full text link
    Knowledge tracing (KT) is the problem of predicting students' future performance based on their historical interactions with intelligent tutoring systems. Recent studies have applied multiple types of deep neural networks to solve the KT problem. However, there are two important factors in real-world educational data that are not well represented. First, most existing works augment input representations with the co-occurrence matrix of questions and knowledge components\footnote{\label{ft:kc}A KC is a generalization of everyday terms like concept, principle, fact, or skill.} (KCs) but fail to explicitly integrate such intrinsic relations into the final response prediction task. Second, the individualized historical performance of students has not been well captured. In this paper, we proposed \emph{AT-DKT} to improve the prediction performance of the original deep knowledge tracing model with two auxiliary learning tasks, i.e., \emph{question tagging (QT) prediction task} and \emph{individualized prior knowledge (IK) prediction task}. Specifically, the QT task helps learn better question representations by predicting whether questions contain specific KCs. The IK task captures students' global historical performance by progressively predicting student-level prior knowledge that is hidden in students' historical learning interactions. We conduct comprehensive experiments on three real-world educational datasets and compare the proposed approach to both deep sequential KT models and non-sequential models. Experimental results show that \emph{AT-DKT} outperforms all sequential models with more than 0.9\% improvements of AUC for all datasets, and is almost the second best compared to non-sequential models. Furthermore, we conduct both ablation studies and quantitative analysis to show the effectiveness of auxiliary tasks and the superior prediction outcomes of \emph{AT-DKT}.Comment: Accepted at WWW'23: The 2023 ACM Web Conference, 202

    Deep knowledge tracing with learning curves

    Get PDF
    Knowledge tracing (KT) models students' mastery level of knowledge concepts based on their responses to the questions in the past and predicts the probability that they correctly answer subsequent questions in the future. Recent KT models are mostly developed with deep neural networks and have demonstrated superior performance over traditional approaches. However, they ignore the explicit modeling of the learning curve theory, which generally says that more practices on the same knowledge concept enhance one's mastery level of the concept. Based on this theory, we propose a Convolution-Augmented Knowledge Tracing (CAKT) model and a Capsule-Enhanced CAKT (CECAKT) model to enable learning curve modeling. In particular, when predicting a student's response to the next question associated with a specific knowledge concept, CAKT uses a module built with three-dimensional convolutional neural networks to learn the student's recent experience on that concept, and CECAKT improves CAKT by replacing the global average pooling layer with capsule networks to prevent information loss. Moreover, the two models employ LSTM networks to learn the overall knowledge state, which is fused with the feature learned by the convolutional/capsule module. As such, the two models can learn the student's overall knowledge state as well as the knowledge state of the concept in the next question. Experimental results on four real-life datasets show that CAKT and CECAKT both achieve better performance compared to existing deep KT models

    Deep Knowledge Tracing is an implicit dynamic multidimensional item response theory model

    Full text link
    Knowledge tracing consists in predicting the performance of some students on new questions given their performance on previous questions, and can be a prior step to optimizing assessment and learning. Deep knowledge tracing (DKT) is a competitive model for knowledge tracing relying on recurrent neural networks, even if some simpler models may match its performance. However, little is known about why DKT works so well. In this paper, we frame deep knowledge tracing as a encoderdecoder architecture. This viewpoint not only allows us to propose better models in terms of performance, simplicity or expressivity but also opens up promising avenues for future research directions. In particular, we show on several small and large datasets that a simpler decoder, with possibly fewer parameters than the one used by DKT, can predict student performance better.Comment: ICCE 2023 - The 31st International Conference on Computers in Education, Asia-Pacific Society for Computers in Education, Dec 2023, Matsue, Shimane, Franc
    • …
    corecore