10,869 research outputs found

    Image Clustering with Contrastive Learning and Multi-scale Graph Convolutional Networks

    Full text link
    Deep clustering has recently attracted significant attention. Despite the remarkable progress, most of the previous deep clustering works still suffer from two limitations. First, many of them focus on some distribution-based clustering loss, lacking the ability to exploit sample-wise (or augmentation-wise) relationships via contrastive learning. Second, they often neglect the indirect sample-wise structure information, overlooking the rich possibilities of multi-scale neighborhood structure learning. In view of this, this paper presents a new deep clustering approach termed Image clustering with contrastive learning and multi-scale Graph Convolutional Networks (IcicleGCN), which bridges the gap between convolutional neural network (CNN) and graph convolutional network (GCN) as well as the gap between contrastive learning and multi-scale neighborhood structure learning for the image clustering task. The proposed IcicleGCN framework consists of four main modules, namely, the CNN-based backbone, the Instance Similarity Module (ISM), the Joint Cluster Structure Learning and Instance reconstruction Module (JC-SLIM), and the Multi-scale GCN module (M-GCN). Specifically, with two random augmentations performed on each image, the backbone network with two weight-sharing views is utilized to learn the representations for the augmented samples, which are then fed to ISM and JC-SLIM for instance-level and cluster-level contrastive learning, respectively. Further, to enforce multi-scale neighborhood structure learning, two streams of GCNs and an auto-encoder are simultaneously trained via (i) the layer-wise interaction with representation fusion and (ii) the joint self-adaptive learning that ensures their last-layer output distributions to be consistent. Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art

    Reinforcement Graph Clustering with Unknown Cluster Number

    Full text link
    Deep graph clustering, which aims to group nodes into disjoint clusters by neural networks in an unsupervised manner, has attracted great attention in recent years. Although the performance has been largely improved, the excellent performance of the existing methods heavily relies on an accurately predefined cluster number, which is not always available in the real-world scenario. To enable the deep graph clustering algorithms to work without the guidance of the predefined cluster number, we propose a new deep graph clustering method termed Reinforcement Graph Clustering (RGC). In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework by the reinforcement learning mechanism. Concretely, the discriminative node representations are first learned with the contrastive pretext task. Then, to capture the clustering state accurately with both local and global information in the graph, both node and cluster states are considered. Subsequently, at each state, the qualities of different cluster numbers are evaluated by the quality network, and the greedy action is executed to determine the cluster number. In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method. The source code of RGC is shared at https://github.com/yueliu1999/RGC and a collection (papers, codes and, datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering on Github
    • …
    corecore