72,332 research outputs found

    On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation

    Full text link
    Graph embedding has been proven to be efficient and effective in facilitating graph analysis. In this paper, we present a novel spectral framework called NOn-Backtracking Embedding (NOBE), which offers a new perspective that organizes graph data at a deep level by tracking the flow traversing on the edges with backtracking prohibited. Further, by analyzing the non-backtracking process, a technique called graph approximation is devised, which provides a channel to transform the spectral decomposition on an edge-to-edge matrix to that on a node-to-node matrix. Theoretical guarantees are provided by bounding the difference between the corresponding eigenvalues of the original graph and its graph approximation. Extensive experiments conducted on various real-world networks demonstrate the efficacy of our methods on both macroscopic and microscopic levels, including clustering and structural hole spanner detection.Comment: SDM 2018 (Full version including all proofs

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Contextual Language Model Adaptation for Conversational Agents

    Full text link
    Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this paper, we present a DNN-based method to adapt the LM to each user-agent interaction based on generalized contextual information, by predicting an optimal, context-dependent set of LM interpolation weights. We show that this framework for contextual adaptation provides accuracy improvements under different possible mixture LM partitions that are relevant for both (1) Goal-oriented conversational agents where it's natural to partition the data by the requested application and for (2) Non-goal oriented conversational agents where the data can be partitioned using topic labels that come from predictions of a topic classifier. We obtain a relative WER improvement of 3% with a 1-pass decoding strategy and 6% in a 2-pass decoding framework, over an unadapted model. We also show up to a 15% relative improvement in recognizing named entities which is of significant value for conversational ASR systems.Comment: Interspeech 2018 (accepted
    • …
    corecore