38 research outputs found

    Deep Generative Adversarial Networks for Compressed Sensing Automates MRI

    Full text link
    Magnetic resonance image (MRI) reconstruction is a severely ill-posed linear inverse task demanding time and resource intensive computations that can substantially trade off {\it accuracy} for {\it speed} in real-time imaging. In addition, state-of-the-art compressed sensing (CS) analytics are not cognizant of the image {\it diagnostic quality}. To cope with these challenges we put forth a novel CS framework that permeates benefits from generative adversarial networks (GAN) to train a (low-dimensional) manifold of diagnostic-quality MR images from historical patients. Leveraging a mixture of least-squares (LS) GANs and pixel-wise â„“1\ell_1 cost, a deep residual network with skip connections is trained as the generator that learns to remove the {\it aliasing} artifacts by projecting onto the manifold. LSGAN learns the texture details, while â„“1\ell_1 controls the high-frequency noise. A multilayer convolutional neural network is then jointly trained based on diagnostic quality images to discriminate the projection quality. The test phase performs feed-forward propagation over the generator network that demands a very low computational overhead. Extensive evaluations are performed on a large contrast-enhanced MR dataset of pediatric patients. In particular, images rated based on expert radiologists corroborate that GANCS retrieves high contrast images with detailed texture relative to conventional CS, and pixel-wise schemes. In addition, it offers reconstruction under a few milliseconds, two orders of magnitude faster than state-of-the-art CS-MRI schemes

    Motion Corrected Multishot MRI Reconstruction Using Generative Networks with Sensitivity Encoding

    Full text link
    Multishot Magnetic Resonance Imaging (MRI) is a promising imaging modality that can produce a high-resolution image with relatively less data acquisition time. The downside of multishot MRI is that it is very sensitive to subject motion and even small amounts of motion during the scan can produce artifacts in the final MR image that may cause misdiagnosis. Numerous efforts have been made to address this issue; however, all of these proposals are limited in terms of how much motion they can correct and the required computational time. In this paper, we propose a novel generative networks based conjugate gradient SENSE (CG-SENSE) reconstruction framework for motion correction in multishot MRI. The proposed framework first employs CG-SENSE reconstruction to produce the motion-corrupted image and then a generative adversarial network (GAN) is used to correct the motion artifacts. The proposed method has been rigorously evaluated on synthetically corrupted data on varying degrees of motion, numbers of shots, and encoding trajectories. Our analyses (both quantitative as well as qualitative/visual analysis) establishes that the proposed method significantly robust and outperforms state-of-the-art motion correction techniques and also reduces severalfold of computational times.Comment: This paper has been published in Scientific Reports Journa

    Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training

    Full text link
    To realize the full potential of deep learning for medical imaging, large annotated datasets are required for training. Such datasets are difficult to acquire because labeled medical images are not usually available due to privacy issues, lack of experts available for annotation, underrepresentation of rare conditions and poor standardization. Lack of annotated data has been addressed in conventional vision applications using synthetic images refined via unsupervised adversarial training to look like real images. However, this approach is difficult to extend to general medical imaging because of the complex and diverse set of features found in real human tissues. We propose an alternative framework that uses a reverse flow, where adversarial training is used to make real medical images more like synthetic images, and hypothesize that clinically-relevant features can be preserved via self-regularization. These domain-adapted images can then be accurately interpreted by networks trained on large datasets of synthetic medical images. We test this approach for the notoriously difficult task of depth-estimation from endoscopy. We train a depth estimator on a large dataset of synthetic images generated using an accurate forward model of an endoscope and an anatomically-realistic colon. This network predicts significantly better depths when using synthetic-like domain-adapted images compared to the real images, confirming that the clinically-relevant features of depth are preserved.Comment: 10 pages, 8 figur

    MRI Image Reconstruction via Learning Optimization Using Neural ODEs

    Full text link
    We propose to formulate MRI image reconstruction as an optimization problem and model the optimization trajectory as a dynamic process using ordinary differential equations (ODEs). We model the dynamics in ODE with a neural network and solve the desired ODE with the off-the-shelf (fixed) solver to obtain reconstructed images. We extend this model and incorporate the knowledge of off-the-shelf ODE solvers into the network design (learned solvers). We investigate several models based on three ODE solvers and compare models with fixed solvers and learned solvers. Our models achieve better reconstruction results and are more parameter efficient than other popular methods such as UNet and cascaded CNN. We introduce a new way of tackling the MRI reconstruction problem by modeling the continuous optimization dynamics using neural ODEs.Comment: Accepted by MICCAI 202

    Learning-based Optimization of the Under-sampling Pattern in MRI

    Full text link
    Acquisition of Magnetic Resonance Imaging (MRI) scans can be accelerated by under-sampling in k-space (i.e., the Fourier domain). In this paper, we consider the problem of optimizing the sub-sampling pattern in a data-driven fashion. Since the reconstruction model's performance depends on the sub-sampling pattern, we combine the two problems. For a given sparsity constraint, our method optimizes the sub-sampling pattern and reconstruction model, using an end-to-end learning strategy. Our algorithm learns from full-resolution data that are under-sampled retrospectively, yielding a sub-sampling pattern and reconstruction model that are customized to the type of images represented in the training data. The proposed method, which we call LOUPE (Learning-based Optimization of the Under-sampling PattErn), was implemented by modifying a U-Net, a widely-used convolutional neural network architecture, that we append with the forward model that encodes the under-sampling process. Our experiments with T1-weighted structural brain MRI scans show that the optimized sub-sampling pattern can yield significantly more accurate reconstructions compared to standard random uniform, variable density or equispaced under-sampling schemes. The code is made available at: https://github.com/cagladbahadir/LOUPE .Comment: 13 pages, 5 figures, Accepted as a conference paper in IPM

    Recurrent Generative Adversarial Networks for Proximal Learning and Automated Compressive Image Recovery

    Full text link
    Recovering images from undersampled linear measurements typically leads to an ill-posed linear inverse problem, that asks for proper statistical priors. Building effective priors is however challenged by the low train and test overhead dictated by real-time tasks; and the need for retrieving visually "plausible" and physically "feasible" images with minimal hallucination. To cope with these challenges, we design a cascaded network architecture that unrolls the proximal gradient iterations by permeating benefits from generative residual networks (ResNet) to modeling the proximal operator. A mixture of pixel-wise and perceptual costs is then deployed to train proximals. The overall architecture resembles back-and-forth projection onto the intersection of feasible and plausible images. Extensive computational experiments are examined for a global task of reconstructing MR images of pediatric patients, and a more local task of superresolving CelebA faces, that are insightful to design efficient architectures. Our observations indicate that for MRI reconstruction, a recurrent ResNet with a single residual block effectively learns the proximal. This simple architecture appears to significantly outperform the alternative deep ResNet architecture by 2dB SNR, and the conventional compressed-sensing MRI by 4dB SNR with 100x faster inference. For image superresolution, our preliminary results indicate that modeling the denoising proximal demands deep ResNets.Comment: 11 pages, 11 figure

    Highly Scalable Image Reconstruction using Deep Neural Networks with Bandpass Filtering

    Full text link
    To increase the flexibility and scalability of deep neural networks for image reconstruction, a framework is proposed based on bandpass filtering. For many applications, sensing measurements are performed indirectly. For example, in magnetic resonance imaging, data are sampled in the frequency domain. The introduction of bandpass filtering enables leveraging known imaging physics while ensuring that the final reconstruction is consistent with actual measurements to maintain reconstruction accuracy. We demonstrate this flexible architecture for reconstructing subsampled datasets of MRI scans. The resulting high subsampling rates increase the speed of MRI acquisitions and enable the visualization rapid hemodynamics.Comment: 9 pages, 10 figure

    Low-Dose CT with Deep Learning Regularization via Proximal Forward Backward Splitting

    Full text link
    Low dose X-ray computed tomography (LDCT) is desirable for reduced patient dose. This work develops image reconstruction methods with deep learning (DL) regularization for LDCT. Our methods are based on unrolling of proximal forward-backward splitting (PFBS) framework with data-driven image regularization via deep neural networks. In contrast with PFBS-IR that utilizes standard data fidelity updates via iterative reconstruction (IR) method, PFBS-AIR involves preconditioned data fidelity updates that fuse analytical reconstruction (AR) method and IR in a synergistic way, I.e. fused analytical and iterative reconstruction (AIR). The results suggest that DL-regularized methods (PFBS-IR and PFBS-AIR) provided better reconstruction quality from conventional wisdoms (AR or IR), and DL-based postprocessing method (FBPConvNet). In addition, owing to AIR, PFBS-AIR noticeably outperformed PFBS-IR.Comment: 8pages 6 figure

    Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images

    Full text link
    Nuclei segmentation is a fundamental task that is critical for various computational pathology applications including nuclei morphology analysis, cell type classification, and cancer grading. Conventional vision-based methods for nuclei segmentation struggle in challenging cases and deep learning approaches have proven to be more robust and generalizable. However, CNNs require large amounts of labeled histopathology data. Moreover, conventional CNN-based approaches lack structured prediction capabilities which are required to distinguish overlapping and clumped nuclei. Here, we present an approach to nuclei segmentation that overcomes these challenges by utilizing a conditional generative adversarial network (cGAN) trained with synthetic and real data. We generate a large dataset of H&E training images with perfect nuclei segmentation labels using an unpaired GAN framework. This synthetic data along with real histopathology data from six different organs are used to train a conditional GAN with spectral normalization and gradient penalty for nuclei segmentation. This adversarial regression framework enforces higher order consistency when compared to conventional CNN models. We demonstrate that this nuclei segmentation approach generalizes across different organs, sites, patients and disease states, and outperforms conventional approaches, especially in isolating individual and overlapping nuclei

    Learned Primal-dual Reconstruction

    Full text link
    We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, but where the proximal operators have been replaced with convolutional neural networks. The algorithm is trained end-to-end, working directly from raw measured data and it does not depend on any initial reconstruction such as FBP. We compare performance of the proposed method on low dose CT reconstruction against FBP, TV, and deep learning based post-processing of FBP. For the Shepp-Logan phantom we obtain >6dB PSNR improvement against all compared methods. For human phantoms the corresponding improvement is 6.6dB over TV and 2.2dB over learned post-processing along with a substantial improvement in the SSIM. Finally, our algorithm involves only ten forward-back-projection computations, making the method feasible for time critical clinical applications.Comment: 11 pages, 5 figure
    corecore