22,757 research outputs found

    CAGFuzz: Coverage-Guided Adversarial Generative Fuzzing Testing of Deep Learning Systems

    Full text link
    Deep Learning systems (DL) based on Deep Neural Networks (DNNs) are more and more used in various aspects of our life, including unmanned vehicles, speech processing, and robotics. However, due to the limited dataset and the dependence on manual labeling data, DNNs often fail to detect their erroneous behaviors, which may lead to serious problems. Several approaches have been proposed to enhance the input examples for testing DL systems. However, they have the following limitations. First, they design and generate adversarial examples from the perspective of model, which may cause low generalization ability when they are applied to other models. Second, they only use surface feature constraints to judge the difference between the adversarial example generated and the original example. The deep feature constraints, which contain high-level semantic information, such as image object category and scene semantics are completely neglected. To address these two problems, in this paper, we propose CAGFuzz, a Coverage-guided Adversarial Generative Fuzzing testing approach, which generates adversarial examples for a targeted DNN to discover its potential defects. First, we train an adversarial case generator (AEG) from the perspective of general data set. Second, we extract the depth features of the original and adversarial examples, and constrain the adversarial examples by cosine similarity to ensure that the semantic information of adversarial examples remains unchanged. Finally, we retrain effective adversarial examples to improve neuron testing coverage rate. Based on several popular data sets, we design a set of dedicated experiments to evaluate CAGFuzz. The experimental results show that CAGFuzz can improve the neuron coverage rate, detect hidden errors, and also improve the accuracy of the target DNN

    Weakly Supervised Object Discovery by Generative Adversarial & Ranking Networks

    Full text link
    The deep generative adversarial networks (GAN) recently have been shown to be promising for different computer vision applications, like image edit- ing, synthesizing high resolution images, generating videos, etc. These networks and the corresponding learning scheme can handle various visual space map- pings. We approach GANs with a novel training method and learning objective, to discover multiple object instances for three cases: 1) synthesizing a picture of a specific object within a cluttered scene; 2) localizing different categories in images for weakly supervised object detection; and 3) improving object discov- ery in object detection pipelines. A crucial advantage of our method is that it learns a new deep similarity metric, to distinguish multiple objects in one im- age. We demonstrate that the network can act as an encoder-decoder generating parts of an image which contain an object, or as a modified deep CNN to rep- resent images for object detection in supervised and weakly supervised scheme. Our ranking GAN offers a novel way to search through images for object specific patterns. We have conducted experiments for different scenarios and demonstrate the method performance for object synthesizing and weakly supervised object detection and classification using the MS-COCO and PASCAL VOC datasets

    Cross-Entropy Adversarial View Adaptation for Person Re-identification

    Full text link
    Person re-identification (re-ID) is a task of matching pedestrians under disjoint camera views. To recognise paired snapshots, it has to cope with large cross-view variations caused by the camera view shift. Supervised deep neural networks are effective in producing a set of non-linear projections that can transform cross-view images into a common feature space. However, they typically impose a symmetric architecture, yielding the network ill-conditioned on its optimisation. In this paper, we learn view-invariant subspace for person re-ID, and its corresponding similarity metric using an adversarial view adaptation approach. The main contribution is to learn coupled asymmetric mappings regarding view characteristics which are adversarially trained to address the view discrepancy by optimising the cross-entropy view confusion objective. To determine the similarity value, the network is empowered with a similarity discriminator to promote features that are highly discriminant in distinguishing positive and negative pairs. The other contribution includes an adaptive weighing on the most difficult samples to address the imbalance of within/between-identity pairs. Our approach achieves notable improved performance in comparison to state-of-the-arts on benchmark datasets.Comment: Appearing at IEEE Transactions on Circuits and Systems for Video Technolog

    Binary Generative Adversarial Networks for Image Retrieval

    Full text link
    The most striking successes in image retrieval using deep hashing have mostly involved discriminative models, which require labels. In this paper, we use binary generative adversarial networks (BGAN) to embed images to binary codes in an unsupervised way. By restricting the input noise variable of generative adversarial networks (GAN) to be binary and conditioned on the features of each input image, BGAN can simultaneously learn a binary representation per image, and generate an image plausibly similar to the original one. In the proposed framework, we address two main problems: 1) how to directly generate binary codes without relaxation? 2) how to equip the binary representation with the ability of accurate image retrieval? We resolve these problems by proposing new sign-activation strategy and a loss function steering the learning process, which consists of new models for adversarial loss, a content loss, and a neighborhood structure loss. Experimental results on standard datasets (CIFAR-10, NUSWIDE, and Flickr) demonstrate that our BGAN significantly outperforms existing hashing methods by up to 107\% in terms of~mAP (See Table tab.res.map.comp) Our anonymous code is available at: https://github.com/htconquer/BGAN.Comment: arXiv admin note: text overlap with arXiv:1702.00758 by other author

    Generative Adversarial Network in Medical Imaging: A Review

    Full text link
    Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function. The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency. This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation. These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.Comment: 24 pages; v4; added missing references from before Jan 1st 2019; accepted to MedI

    Attacks on State-of-the-Art Face Recognition using Attentional Adversarial Attack Generative Network

    Full text link
    With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. So, it is important to study how face recognition networks are subject to attacks. In this paper, we focus on a novel way to do attacks against face recognition network that misleads the network to identify someone as the target person not misclassify inconspicuously. Simultaneously, for this purpose, we introduce a specific attentional adversarial attack generative network to generate fake face images. For capturing the semantic information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces face recognition networks as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person

    Context-Aware Semantic Inpainting

    Full text link
    Recently image inpainting has witnessed rapid progress due to generative adversarial networks (GAN) that are able to synthesize realistic contents. However, most existing GAN-based methods for semantic inpainting apply an auto-encoder architecture with a fully connected layer, which cannot accurately maintain spatial information. In addition, the discriminator in existing GANs struggle to understand high-level semantics within the image context and yield semantically consistent content. Existing evaluation criteria are biased towards blurry results and cannot well characterize edge preservation and visual authenticity in the inpainting results. In this paper, we propose an improved generative adversarial network to overcome the aforementioned limitations. Our proposed GAN-based framework consists of a fully convolutional design for the generator which helps to better preserve spatial structures and a joint loss function with a revised perceptual loss to capture high-level semantics in the context. Furthermore, we also introduce two novel measures to better assess the quality of image inpainting results. Experimental results demonstrate that our method outperforms the state of the art under a wide range of criteria

    HashGAN:Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval

    Full text link
    As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogeneity gap. To further address this problem, we propose an adversarial hashing network with attention mechanism to enhance the measurement of content similarities by selectively focusing on informative parts of multi-modal data. The proposed new adversarial network, HashGAN, consists of three building blocks: 1) the feature learning module to obtain feature representations, 2) the generative attention module to generate an attention mask, which is used to obtain the attended (foreground) and the unattended (background) feature representations, 3) the discriminative hash coding module to learn hash functions that preserve the similarities between different modalities. In our framework, the generative module and the discriminative module are trained in an adversarial way: the generator is learned to make the discriminator cannot preserve the similarities of multi-modal data w.r.t. the background feature representations, while the discriminator aims to preserve the similarities of multi-modal data w.r.t. both the foreground and the background feature representations. Extensive evaluations on several benchmark datasets demonstrate that the proposed HashGAN brings substantial improvements over other state-of-the-art cross-modal hashing methods.Comment: 10 pages, 8 figures, 3 table

    Generating Images with Perceptual Similarity Metrics based on Deep Networks

    Full text link
    Image-generating machine learning models are typically trained with loss functions based on distance in the image space. This often leads to over-smoothed results. We propose a class of loss functions, which we call deep perceptual similarity metrics (DeePSiM), that mitigate this problem. Instead of computing distances in the image space, we compute distances between image features extracted by deep neural networks. This metric better reflects perceptually similarity of images and thus leads to better results. We show three applications: autoencoder training, a modification of a variational autoencoder, and inversion of deep convolutional networks. In all cases, the generated images look sharp and resemble natural images.Comment: minor correction

    A Study of Cross-domain Generative Models applied to Cartoon Series

    Full text link
    We investigate Generative Adversarial Networks (GANs) to model one particular kind of image: frames from TV cartoons. Cartoons are particularly interesting because their visual appearance emphasizes the important semantic information about a scene while abstracting out the less important details, but each cartoon series has a distinctive artistic style that performs this abstraction in different ways. We consider a dataset consisting of images from two popular television cartoon series, Family Guy and The Simpsons. We examine the ability of GANs to generate images from each of these two domains, when trained independently as well as on both domains jointly. We find that generative models may be capable of finding semantic-level correspondences between these two image domains despite the unsupervised setting, even when the training data does not give labeled alignments between them
    • …
    corecore